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Random resistor networks with bonds occupied randomly by conductances g = exp (±±lx), where x
is the random variable on [0, 1] and l � 1 are investigated by means of numerical simulations.
The problem of correlation between local conductance and local current or local voltage is ad-
dressed. The distributions of currents, voltages and power dissipated are calculated for separate
subsets of bonds with identical value of conductance. It occurs that subsets of highly/poorly con-
ductive bonds have identical distributions of currents/voltages. From this we conclude that within
the subset of highly/poorly conducting bonds local conductance and local current/voltage are statis-
tically independent variables.

Random resistor network is a powerful tool of modelling conduction processes in semi-
conductors, thin and thick films. In this approach the physical structure is mapped
onto an electrical network. When dc features are considered the branches of the
network become resistors which take on random values of conductance g. Its distri-
bution depends on the structure being modelled. In many physical cases, for exam-
ple in case of Variable Range Hopping (VRH) in amorphous semiconductors [1],
thin films or granular metals and semiconductors, this distribution is very broad [2].
Namely, g = exp (±±lx), where x is a random variable uniformly distributed between 0
and 1 and l � 1. Transport properties of such network are then described by the dis-
tributions of local currents and voltages. For example, the second and the fourth mo-
ments of these distributions are related to the overall conductance G and its fluctua-
tions, respectively. In this paper, the distributions of local currents and voltages in
random resistor network with (exponentially) broad distribution of bond conductances
are considered. This problem has been addressed already by Roux et al. [3]. They have
studied it both theoretically and by means of numerical simulations of a 2D network.
One of the most important questions they answered was about the correlation between
local conductance g and current j flowing at the same point. They have found that
although some correlations between local conductance and local power dissipation e do
exist they are rather small and can be neglected. The conclusion was then that g and
e = j2/g are statistically independent variables. In this paper, we present new results de-
rived on the basis of numerical simulations of 3D network. In view of these results the
conjecture about the statistical independence of e and g is not confirmed. We have
found that the distribution of local power dissipation depends on the bond conduc-
tance. This can be seen in Fig. 1, where the map of joint power±conductance distribu-
tion n (ln e, x) is shown. The front (high power part) of this distribution follows the line
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ln e = ±±lx in the region x > 0.25 and the line ln e = l(x ±± 0.5) in the region x < 0.25.
This behaviour can be explained within the framework of critical path analysis [1]. The
idea is to treat all the bonds with conductance g > gc as conducting bonds whereas
those with g < gc as insulating ones. To form a percolating cluster the concentration of
conducting bonds must be equal to the percolation threshold xc, which for simple cubic
lattice is xc � 0.25. Consequently, gc � exp (±±lxc). gc is the smallest conductance in the
percolation cluster which determines the overall network conductance, G � gc. When
unit voltage V = 1 biases the network then the overall current is J = VG � gc. The
maximum voltage drop that could appear across any bond is v = V = 1. The maximum
local energy dissipation is then e = V2g. This means that the distribution n(ln e, x) is
bounded by the line: ln e = ln g = ±±lx On the other hand, the maximum current that
may flow through a bond is J. The maximum power dissipated in a bond is then, e = J 2/g,
and so the distribution n(ln e, x) is bounded also by the line ln e = ±±2lxc + lx � l
(x ±± 0.5). However, since current J flows only through the bonds that form percolating
cluster (i.e. those with x < xc) the distribution n(ln e, x) achieves the latter bound only
in the region x < xc.

Let us now address the problem of correlations between local conductance g and
voltage drop n across it. The quantity we should consider is the normalized voltage,
v = n/V. In Fig. 2 the (conditional) distributions nv(ln v2/l, x) for x fixed are drawn
versus ln v2/l for several values of x. For x > xc the distributions collapse giving rise to
the conclusion that in this region of x the correlation between local conductance and
voltage drop across it does not exist. As x decreases the shape of nv(ln v2/l, x) becomes
x dependent (not shown in Fig. 2) and this means that such correlation exists for x � xc
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Fig. 1. The map of joint distribution n(ln e, x) versus the logarithm of local power dissipation, ln e,
and scaled logarithm of local conductance, x = ±±ln g/l obtained for resistor network biased by
unit voltage. The network was the simple cubic lattice of size L = 11 filled with conductances
g = exp (±±lx), with l = 50. The lines are drawn according to the equations ln e = ±±lx (solid ones)
and ln e = l(x±±0.5) (dashed ones)



(g � gc). Let us now comment on the choice of the scaling variable on the horizontal
axis in Fig. 2. We have concluded already that maximum voltage that could appear on
conductance g is n = V (v = 1). The bonds with v = 1 form the front of the distribution
n(ln e, x) in Fig. 1 in the region x > xc. The tail of this distribution is formed by the
bonds with minimum voltage. Such voltage appears on the bonds with the largest con-
ductance, i.e. those with x = 0. By definition, bonds with x = 0 belong to the percola-
tion cluster and current flowing through them is of the order of J � gc. Thus, the mini-
mum voltage nmin = J/g(x = 0) = J is of the order of J and the tail of the distribution
n(ln e, x) in the region x > xc is bounded by the line ln e = ln�gn2

min� = ±±lx±±2lxc. Now
we can estimate the width of the distribution n(ln e, x) for fixed x as w � 2lxc. This is
also the width of the distribution of normalized voltage ln v2. In order to get collapsing
of the distributions for different l values we should then use the scaled variable: ln v2/l.
This is confirmed in Fig. 2 where the distributions nv obtained for l = 50 and 70 are
shown to collapse.

Eventually, let us consider the correlation between local conductance g and current j
at the same point. We consider the normalized current i = j/J. In Fig. 3 the (conditional)
distributions ni(ln i2/l, x) with fixed x are drawn versus ln i2/l for several values of x
and for l = 50 and 70. This time the collapse of the distributions is excellent for x < xc.
This means that a current which flows through a highly conducting bond (small x) does
not depend on its conductance. In other words, i and x are statistically independent
variables in the region x < xc. This conclusion does not hold for x � xc where the shape
of ni(ln i2/l, x) becomes x dependent (not shown in Fig. 3). One may wonder that cur-
rent distributions in Fig. 3 extend onto the region i > 1, what by definition is forbidden.
This inconsistency comes from the method used in numerical simulations. We have used
the unit voltage to bias the network and counted the number of bonds carrying a given
current j irrespective of the total current J which flows through the network. The nor-
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Fig. 2. Distributions nv(ln v2/l, x) as a function of scaled normalized voltage ln v2/l obtained for
various values of x and l: x = 0.97, l = 70 (dashed line), x = 0.97, l = 50 (solid line), x = 0.81,
l = 70 (triangles), x = 0.74, l = 50 (squares). The size of the network (simple cubic lattice) was
L = 11
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malized current i was then computed as j/hJi instead of as j/J. Thus, the distribution
displayed in Fig. 3 in fact is the distribution of the quantity ln i2/l + 2 ln (J/hJi)/l. For
finite L the percolation threshold xc is the random variable with a distribution, which is
peaked around hxci � 0.25 but has some non-negligible width [4]. This makes the term
2 ln ( J/hJi)/l = 2(xc ±± hxci) also a random variable whose distribution convolutes with
that of lni2/l to give the distribution in Fig. 3. This effect, although influences the shape
of the distribution in Fig. 3, does not challenge our major conclusion about the lack of
correlation between the local values of i and g for highly conducting bonds.

In conclusion, the problem of correlations between the local conductance and local
current and voltages in random resistor networks with broadly distributed bond conduc-
tances has been studied. It was shown that within the subset of for highly/poorly con-
ducting bonds local conductance and local current/voltage are statistically independent
variables.
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Fig. 3. Distributions ni(ln i2/l, x) of scaled normalized currents ln i2/l calculated for various values
of x and l: x = 0, l = 70 (squares), x = 0.08, l = 70 (diamonds), x = 0.16, l = 70 (circles), x = 0,
l = 50 (plus sign), x = 0.12, l = 50 (minus sign)

254 A. Kolek: Current and Voltage Distributions in Resistor Network


