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A disordered medium composed of randomly arranged metal and insulator, both with finite conductance, is
considered. The distribution of voltage dropsn such two-component random system has been calculated
both analytically and numerically. It is shown that the distributhdé¢y) of the logarithm of voltage drops,
y=—In(1A), is the sum of several membes,,(y) andN; (y), k=0,1,2 . ... MembersN.(y) describe the
voltage distribution in the metallic phase. Membakg(y) describe the voltage distribution in the insulating
component. The subsequent members are shifted subsequently ory thes by an amount of
2k In(hLY(*#)), whereo is the crossover exponent amds the percolation correlation length exponent. The
zero-order member of thid, family is governed by the multifractal spectruif«), wherea=y/InL, found
originally for the random resistor network. The zero-order member ofNfjefamily is governed by the
multifractal spectrump(«a) found originally for the random resistor superconductor network. The next mem-
bers are built from two components. The first one is the scaled repetitibgydbr the N, family or N;, for
theN;, family. The other one is the distribution of voltage drops in such percolation objects like dangling ends,
isolated clusters for thbl, family or clusters perimeter for thi;, family.

[. INTRODUCTION “rest” of the lattice. For dimensiongi>2 those two are
different geometrical objects and thus the spectra have dif-
Transport properties of heterogeneous media have rderent shapes for RRN and RRSN, i.e# ¢ for dimensions
cently attracted much interest because of their relevance > 2.
many industrial applications. When the disorder of the me- RRN and RRSN may be considered as the limiting cases
dium is extremely large, percolation thebrig a very effi-  of the more general two-component random resistor network
cient tool of investigation. The properties of electrical trans-(TCRRN) in which both components of the mixture take
port can be then described by the distribution of voltagefinite values of the conductan¢&This is also a more real-
drops in the so-called random resistor netwdRKRN). It istic model of the metal-insulator composite in which non-
turns out that various moments of this distribution havezero conductivity of an insulator is taken into account. Al-
physical interpretations.* For example, the zero moment ternatively, it is also a more realistic model of the mixture of
describes the mass of the percolating backbone, the secontktal and real superconductor with small but nonzero resis-
one is the network conductance, the fourth is related to retivity. After some controversy it was argued that moments
sistance 1f/ noise whereas the infinite moment is governedof voltage distribution in the two-component RRN crossover
by the so-called singly connected bortd3j.e., those carry- from fractal to homogeneous region with tsigle cross-
ing the largest current in the percolating cluster. It wasover exponenassociated with the ratio of the conductance
shown that at the percolation threshold all positive momentsf the componentdy=g;/g., irrespective of the moment’s
of voltage distribution scale as power laws of system sizeorder!’~?*This conclusion leads to important and nontrivial
L but with different exponent&.*® This leads to the conclu- results concerning the behavior of various physical quantities
sion that the voltage distribution in RRN has a multifractalin inhomogeneous systems. For example, it was shown that
structuré®®>’~°The term “multifractal” means that there is new critical exponents control the dependence &fridise
an infinite (continuou$ set of irrelevant exponent$(a) intensity on mixture composition in the vicinity of the per-
which describe the power-law scaling, as a function of syscolation threshold’=?® Thus the investigations of voltage
tem size, of different regiona of the distribution. The mul-  distribution in the two-component RRN are very important.
tifractal spectra were found for the two ideal random resistoMhile the first attempt suggests the distribution to be ap-
networks. For RRN, i.e., for the network in which ideal in- proximately Gaussia&fi our present results do not confirm
sulatorg;=0 and normal conductaimeta) are mixed, the this conclusion. We have found that the distribution of the
spectrumf(a) which describes scaling of voltage distribu- logarithm of voltage drop® is composed of several peaks
tion within the metal was found’~** For random resistor shifted subsequently on tlye= —In(+f) axis by an amount of
superconductor networfRRSN), i.e., the network in which 2 In(hLY("¥)), wheree and v are the crossover exponent and
the ideal conductog. = is diluted in the host of the normal the percolation correlation length exponent, respectively.
metal, the spectrun$(«) which describes scaling of the The rest of the paper is organized as follows: In Sec. Il we
voltage distribution again in metal was also fodalithough  shortly review the multifractal approach to voltage distribu-
in both cases the spectra describe scaling of the voltage diton in RRN and RRSN. In Sec. Il the scaling functions for
tribution in the metallic phase, they are related to differentmoments of current and voltage distributions are introduced
geometrical objects. In the case of RRN the spectrum referand their new properties are established based on the usual
to percolating cluster whereas for RRSN it refers to thescaling assumption. In Sec. IV the voltage distribution in the
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two-component RRN is calculated via the inverse Laplacare well known. For example; p(0)/v=—xy=D3 is the
transform technique as proposed by Fourcade anftactal dimension of the percolating backbone whereas
Tremblay? In Sec. V the alternative derivation of this distri- —p(2q)/v+2qp(2)/v=—x,=1/v for q—=. In the ther-
bution is given by the use of the hierarchical model of themodynamic limit thes dependence oV, can be easily ob-
two-component random system recently proposed by Morotained if we note that fok > ¢ momentsW, should scale as
zovsky and Snarskii’?*In Sec. VI a large number of com- (L/&)~24(L/&)9¢ PRI/r Thus foré~e "

puter simulations performed on a three-dimensional 3D

simple cubic lattice is presented to show how the scaling W~ L9220,

theory predictions work in real TCRRN. Conclusions and 3

remarks on topological interpretation of the obtained distri—Where exponents

bution are given in Sec. VII. t(2q)=(d—2q)v+p(2q), t(2)=t. @)

Il. MULTIFRACTAL APPROACH MomentsW, can be also expressed in terms of voltage dis-

. . . . __tribution. Letn(+?) be the number of bonds with voltage
Consider the RRN in which bonds are occupied withgropv,=yV. Then

probability p by unit conductance. With probability 4p

bonds are removed. For such a network moments of voltage 1
distribution may be defined W= fo dvn(v) v ©)
W= 2 ﬁ 2 (1) The asymptotic form oh(v?) can be derived by the method
@ g5 \Vv) proposed by Fourcade and Trembfajlamely Eq.(5) re-

written in terms of new variablg= —In(:/),
where V|, denotes voltage drop on bortd when external

voltageV is imposed to the network and summation is over o
all occupied bonds with nonzero voltages. Some of the above Wq= f dyNgra(Y)EXP(—0QY), (6)
moments have physical interpretations. For example, the net- 0
work conductanceG is just the first =1) moment, where|Nggn(y)dy|=|n(v?)dv?|, may be now considered as
G=W,;. Moments forq=0, q=2, and q== have also the Laplace transform olrgn(Y), i.€., the distribution of
physical interpretations as was mentioned in the Introducthe logarithm of voltage drops. Hendéxgn(y) can be ob-
tion. Above the percolation threshofa, and forL—o, G  tained by inverting Eq(6). Using the saddle-point approxi-
reaches the thermodynamic limit and dependsep— p. mation they have shown that
andL according to the well-known percolation power

Nrrn(Y) ~ L, (7)

where a=y/InL=—In(A/InL and f(a) is the Legendre
where t is the conductivity exponent. At the percolation transform of p(2q)/v, i.e., (1k)[dp(29)/dq]=a,
threshold, however, the percolation correlation lengtti- f(@)=qa—p(2q)/v. The above equation reads that fer
verges and relatioif2) is never approached, the system isfixed, f(a) may be interpretetf as a fractal dimension of a
always in the fractalself-similay region In this case the set of bonds characterized by a voltage drop that scales with
dep_endence of conductan€eon sizeL can be obtained by gjze ag2~L 2. f(a) is thus a continuous spectrum of frac-
putting e~¢~ =L~ into Eq. (2), » is the correlation ta| dimensions which characterize different padtsof the
length exponent.Thus forp=p,, Wy~L"Y"*9"2.In gen-  gistribution of the logarithm of voltage drops in the network.
eral all positive moments defined in EQ@) scale withL as  Note thatf(a)=Dg for q=0 and this is the maximum value
power laws’>> of f(a) since any set of bonds characterized by a given
—p(2q)/v voltage drop is always a subset of the percolating backbone.
Wo~L 3) Similarly we can describe multifractal properties of
for =0. Above we use the notation of Refs. 2, 3, and 7.RRSN, i.e., the network in which bonds are occupied by
Note that it is completely equivalent to define the problem inSuperconductorginfinite conductancewith probability p.
terms of current distribution. Exponentsx, which describe  With probability 1—p bonds take unit conductance. Mo-

the L dependence of the moments of current distribdtfon ments of voltage distribution are then defined by Bg.but
with summation extended over dlinoccupiedl bonds with

l,\29 finite (unit) conductance over which nonzero voltages are
Mf% (I_) ~L™%, observed. This change makes the critical exponents in RRSN
different (for d>2) from that of RRN. Atp=p. and for
wherely, is the current in bond when external current ~ q=0 momentsW, scale ad
biases the network, are then related to exponp(igg))/v

_p(29)  p(2)

q v v

G~elLd72 2)

Wq~|_§(2q)' 8

whereas fop<p, andL—o they crossover to

W NLd72q|8|S(2q)72qs, (9)
It was shown that exponentx(2q)/v, or x4, form an d

infinite set of independent exponent$:®~° Some of them where



s(2g)—2gs=(d—2q)v—{(2q)v, s(2)=s. (10

Note thats(2)=s is the conductivity critical exponent in
RRSN, £(0)=d, and{(«)=1/v. The latter describes scal-
ing of the number of singly disconnected borid3 The dis-
tribution of the logarithm of voltage drops in RRSN is thus

NrrsN(Y) ~ L%,

where ¢(«) is the Legendre transform of {(2q), i.e.,
—-0¢(29)/dg=a, ¢(a)=qa+{(2q9). As we have already
pointed out the spectrd and ¢ refer to different (for
d>2) objects and in general they have different shapes.

11

IIl. MULTIFRACTAL MOMENTS IN THE TWO-
COMPONENT RRN

Let us consider the random resistor network in which the
effect of nonzero conductance of the insulating phase is

taken into account. In this network the ratio of “pood;

and “good” g. conductance is given by a small-value pa-

rameter h=g;/g.. Conductanceg, occupies bonds of
d-dimensional lattice with probabilitp. Conductance; oc-
cupies bonds with probability 2p. For such TCRRN mo-

ments of current and voltage distributions should be define

separately for the insulatingi)( and conducting )
bondd’-2%3

where 1,(V,) denotes currentvoltage drop in bond b,
which belongs to eitheri] or (c) phase, when external cur-
rent| (voltageV) is imposed on the network. All the next

results are based on the natural assumption that in the ther-
modynamic limit each of the moments defined above is aMiq(

generalized homogeneous functionthe neighborhood of
the pointh=0, e=p—p.=0, i.e., near the percolation tran-
sition. Important are relations

G\ 2

qu:(a) Miq1
G\

ch: _) Mcqa (12
9

where G is the conductance of the network. Some of the
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now make the usual scaling hypothesis for each of the mo-
ments defined above. First let us draw our attention to the
insulating phasé!

Miq=Miq(e,h)=e[52Pmy,(h/|e|¥%),

iq™
Wiq:Wiq(suh) = |8|s(2q)—2qswiq(h/|8|1/¢),

where ¢ is the crossover exponent. It was proven tigat
takes unique value = 1/(t+s) for all multifractal moments
independent of the moments order, i.e., for g 0172123
Note that forh=0 momentsM;, are defined both above and
belowp,. Miq(,0)=0 for >0 andM,(e,0)~|e|%? for
£<0. If we further assume thal;; is singular only at
h=0,=0, then for fixed finites, M, is not singular and
may be expanded about the point 0,2

1 9M

_ iq
Miq(s,h)—Miq(S,O)‘FIZlHW hX,

h=0

(13

Now let us note that foe>0 the conducting percolating
cluster exists and all the currents in the insulating phase scale
as l,=0;V,~0;V~gil/G~g;l/(g.e')~hl. Consequently

%we leading term iM;, scales ab?9, and this means that the

rst 2q—1 derivatives in Eq(13) vanish. Thus we geM;,
expanded up to the first nonvanishing term

Miq(g,h)=Mi4(£,0)
1

(29)!

=Miq(£,0)+Ciqh?|g |20 ~2d¢,

9%9miq(X)

2 2q)—2q/
+ h24| g|S(29) ~2d/e 2

MomentsW;, can now be calculated by the use of EtR).
For e<0 we haveG~g;|e| ~° and

Wiq(s,h)~|8|s(2q)*2%+ Clqh2q|8|s(2q)72q/¢72qsl

Note that fore <0 we getW,q(e,0)~ 529295 as we ex-
pect, according to Eq9). The latter expression also reads
that in the expansion ofV4(e,h) about h=0 the first
2q—1 derivatives,3*Wi,/dh¥, vanish ath=0. Thus the
above equation is valid also far>0. This leads us to the
second nonvanishing term in E@.3). For e>0 we get

£,h)~h20|g[520-20/¢ 4 C7 4] [s(20)—4dle= | g [s(20)
x{(h/|e|Y¢)2a+ Céq(h/|s|”"’)4q}.

If repeated this leads us to the conclusion timg and wg,
are functions of i/ |&|Y#)?9 rather than oh/|e|'¢,
Wig(e,h) =[e[*?V 29 wq((h/[e[9)%).  (14)

It can be shown in a very similar way that multifractal mo-
ments in the conducting phase obey the scaling form of

Weq(e,h)=e"@Dw,((h/]e]V¢)29). (15)

features of defined quantities can be easily established. For The only important difference in derivation of EQ.5) is

h—0 and &>0 we get RRN and thus
Weq~ &' @D Mg~ &' 2D ~291 Similarly for h—0 ande<0
we get RRSN andVl;;~ |&[S9, W~ 52D =295 et us

that we should start from expansion &, rather than
M, since the former foh=0 is defined both foe <0 and
£>0; Wq(£<0,0)=0, Weq(e>0,0)~ "9,
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Eventually let us note that to include the dependence ofvhere j>=—1, can be calculated by the saddle-point ap-
Wiy andW¢q onL in the thermodynamic limit the right-hand proximation. If we assume th&, depends weakly og, the
side of Egs(14) and(15) should be multiplied by the factor argument in the exponential is extremum for a valueyof
of L9729, such that

IV. VOLTAGE DISTRIBUTION IN THE 2kIn(hLY#)) 4 94(29) InL+y=0,
TWO-COMPONENT RRN Jq
. . . . or a value ofa=y/InL such that
In the previous section the new scaling functions of mul-
tifractal moments were derived. They enable us to write the 2KIn(hLY"®))  97(2q)
multifractal moments as series expanded in the neighborhoogl= — -
of the pointh=0 which is the well-studied case of RRSN for
momentsW;, or RRN for momentsV,,. Namely

InL aq

As L increases the extremum value of the argument in the
exponential approaches the form of the spectiirshifted
by amount of XIn(hLY®))/InL on the« axis

%)

Wig(g,h)~ L9720 g[s20)-2as 1 4 > qu(h/|8|l/"°)2qk).
k=1

(16) {(2q)
InCyq+£(29)InL—q a0 InL— ¢| o
This expansion, which is valid fdt—o, affects the depen-
dence ofW,, on system sizé. for L<¢. The latter can be 2kIn(hLY(9))
obtained by the usual finite-size scaling argument. Placing t——r/InL, for I<L<é.
le|=¢ Y=L " in Eq. (16) and with the help of Eq(10)
we get Hence the distribution
” a Uve)
Wiq(L,h)NLi(Zq) 1_,_'(21 qu(hLll(V(p))qu ] (17) Nik(y):akL¢( +2kIn(hLHv¢ )/InL),

. where a,=a,(«,InL) depends weakly on In° Eventually
The latter tells us that in the two-component RRN momentshe asymptotic form of the distributioN; (y)

of voltage distribution in the insulating phase scale mostly
like in the RRSNsee Eq(8)]. The influence of the metallic
component appears as the very small correction of order
(hLY(#))2d |n the following we will show that this small
correction results from the distribution of voltage drops
which is, however, very different from that of RRSN.

To proceed let us note that like in the case of RRN orAs we have mentioned above, the distributiep(y) is ap-
RRSN the asymptotic form of the distributid#(y) of the  proached a& increases but is still in the fractal region, i.e.,
logarithm of voltage drops on insulating bonds, L<¢ (é~h~"¢ in the two-component RRNAs we see the
y=—In(), may be obtained via the inverse Laplace trans-istribution N;(y) is composed of a number of subdistribu-

N (y)= aOL¢(“)+ alL¢(a+2|n(hLl’(”‘P))/InL)

+ azl_¢>(a+4|n(h|_1’(W))/lnl_)+ . (19

form of momentsw;, (Ref. 9, tions N (y) which are subsequently shifted by
2 In(hLY™#)) on they axis. Each of these subdistributions is
Ni(y):j{//—l[wiq]::Z—l[COng(Zq)] governed by the spectrum. In the following we will call

the distributionsN; (y) the member distributions.
* The distribution of voltage drops in the conducting phase
+ > LT gk 2 F2aK ()], can be obtained in a similar way. Note, however, that expan-
k=1 sion of W,4(&,h) abouth=0 and fore >0 is different from
that for e <0. This is becaus®,,(e>0,0)~¢'?? whereas
The first term in the sum above leads to the distribution\/\/cq(8<0,o):o_ Thus the first term of the expansion, i.e.,
Nrrs\(Y) as it was shown for RRSisee Eqs(8) and(11)].  W,(£,0), appears or vanishes depending on the siga. of
The inverse Laplace transforms of the next terms This of course has an effect in the finite-size behavior of
W, for L<¢, ie,,

1 (+i=
;%Rl[ckthQKLg(zq)Jr2C]k/(V<P)]: m o dqexp:lanq o
J ch(L,h)NL—p(Zq)/v BOW% qu(hL”("‘P))zqk),
+2gkin(hL(v¢)) (20)

+£(2q9)InL+qgy]=N; , , ,
£(29) ayI=Nu(y) where By, appears or vanishes depending on whether the
(18 percolating cluster exists or not. The inverse Laplace trans-
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form technique applied to moment¥., gives the distribu-
tion of the logarithm of voltage drops in the conducting
phase (@

o oo

Uve)
NC(y):kZ:O ch(y):kz_:o bka(a+2kIn(hL 2 )/InL), (21)

whereb,=b,(«,InL) depends weakly on Inandby=0 if
the percolation cluster does not exist. The form of &4) is
approached fobL>1 but still L<¢. Like in the insulating
phase the distributioMN.(y) is a sum of member distribu-
tions N (y) shifted subsequently by 2 In*(*#)) on they FIG. 1. Hierarchical model of the two-component random per-
axis. However, unlike in the insulating phase, each memberolating system. Figures represent the first level of generation in
of the sum is governed by the multifractal spectrdiar) case wherfa) percolation cluster existéb) percolation cluster does
obtained originally for RRN rather than by the spectrumnot exist. In the next steps of generation conduct&Bcevhich is in
o(a). series withG; is replaced by a branch as in Figal

Having the distributions in both insulating and conducting .
components described we are able to write the distribution ot at the —percolation threshold and fok <¢,

—p(2)/v 2 ;
the logarithm of voltage drops in the two-component RRN Gc~dclL P2) and_Gi~giL5( ) as in Egs.(3) and (8), re-
spectively. The existence or not of the percolating cluster

* manifests itself only at the first level of iteration as it is
N(Y)=N;i(y)+Nc(y)= > [Ne(Y)+Ni(y)]. (220 shown in Fig. 1. In order to derive the voltage distribution let
k=0 us assume that voltages appearing inside elem@ptand

The distributionN(y) has a “multipeak” structure in which ~Gi 0bey the distributionsNgry(y) and N grs\(y), respec-

the distributionsNRRN(y) and NRRSI\(y) obtained for RRN tiVE'y. If a constant voltagé/ biases the structures in Flg 1

and RRSN are rescaled and repeated with a periof’® voltages appearing on elemeri are Vo=V and
2 In(hLY*#)y on they axis. V.=V G; /G, when a percolation cluster exi§iig. 1(a)] or

In the next section an alternative derivation My) is  Y1c=VGi/Ge if it does not exis{Fig. 1(b)]. It is because in
supplied. While much simpler, it is based however on thé"€h—0 limit we haveg;<g. and alsoG;<G. . Voltages
hierarchical model of the two-component RRN and thus ha@" €lements; areVq;=V in either cases. In the second step
less general meaning. In the section after the next, comput@rf generation elemer®,; which is in series withG; is re-
simulations performed on 3D TCRRN are presented in ordePlaced by the whole branch like those in Figa)l Conse-

to check the predictions of scaling analysis given above. duently voltages that appear on new elem&ysandG; are
V.=V .G /G, andV;=V,.. At thek+1 level of genera-

tion new voltages ofV (. 1yc=VyGi/G.=V(G;/G.)**?
andV,;=V,.=V(G;/G.)* appear on elements added in this

Recently the very useful and powerful hierarchical modellevel. In each of the elements voltages obey the distribution
of the two-component percolating system has beeINRRN(_In(VlZ)/V(ZkJrl)c)) for elements G, or
proposed. 2% In the model conductand®, in Fig. 1 repre-  Ngrsn(— IN(VZV2)) for elementsG; . Thus the total distribu-
sents metalligfirst) component whereas conductarigerep-  tion is the sum of all the contributions added during the
resents the “insulating’(second component. It is assumed generation

G;

V. HIERARCHICAL MODEL

N(y)= k§=:O Nrrn(— IN(VE/ Vi) + Nrrsi— IN(VEIVE))

= go Nrrn(—IN(VZ/V2) +In(VEJ/V?)) + Nrren(— IN(VEIV?) +In(VE/IV?))

) [

=D, Nrral Y+ 2KIN(G;/Go) ]+ NrreN Y+ 2KIN(G; /Go) 1= 2, Nl Y+ 2KIN(hLY"®)) ]+ Nggsny+ 2KIn(hLH#)) ]
k=0 k=0

o

_ 2 bOLf(a+ 2k|n(hLl/(”‘P))/InL)+aoL ¢(a+2k|n(hL1/("“’))/InL)’
k=0
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where we have made use of relation
p(2)/v+(2)=(t+s)/v=1/(vep) as given by Eqs(4) and

1000

(10). Thus the periodic multipeak structure of voltage distri- 100 =
bution is derived again. Note, however, that unlike the deri- " \%ﬁﬁk
vation based on the scaling assumption this derivation pre- - ;“‘AAX :‘E‘bu ‘a,&&\
dicts constant amplitudes of subsequent member £ ﬁ"g 2 ‘A.,M:A 5
distributions which build up the total distribution. Let us also =~ f h"s& : Rf%m
note that like the previous one, the present analysis predicts 01 l 2 | o %
vanishing or not of the first term in the distributid . This 0.01 it} AN
is obvious if we look at Fig. 1 where different first level v !|® ! 1‘“‘*‘&
generators are assumed depending on whether the percolat- 991
0 10 20 30 40 50 60 70 80

ing cluster exists or does not. Let us eventually note that
more detailed treatment of the problem is possible if we use
the new model of two-phase systems working inside the
smearing regiof! i.e., for |¢|<h¢ instead of the model of
Fig. 128

-Ine

FIG. 2. The distributiorP(—Ine) (solid line) of the logarithm of
energy dissipated in the two-component RRN of dize8, with
g.=1 andg;=h=10"". Points refer to energies dissipated in me-
tallic bonds(J) distributionP,, and insulating bond&\) distribu-

VI. NUMERICAL SIMULATIONS tion P;. Solid line is the sum of the two. The arrow is placed at
—Ine=—Inh.

To test results obtained in the previous sections we have o .
performed computer simulations of the 3D TCRRN. In eachwhich the partP; of the distribution is shifted by Im and
computational step a simple cubic lattice of linear dizén  thus does not overlap the, part of the total distribution.
which bonds were occupied randomly with probabifitypy We have performed simulation; for various values of pa-
conductance,=1 was generated. The remaining bonds takg@meterh=10"°, 10" " and for various values of the lattice
valueg; = h. Once the lattice was generated, conductances ciizeL=8,10,12,15. For each pair of these parameters fixed,
all the bonds were stored in a band matrix of network equafrom several hundred fot =15 to several thousands for
tions and unit dc external V0|tagé:1 was app“ed to the L=8 of network realizations were generated and distribu-
opposite sides of the lattice. Free boundary conditions werlions P(—Ine) were averaged. In Fig. 2 the distribution
assumed in the remaining two directions. Next, voltages oP(—Ine) versus—Ine for h=10"" andL =8 is shown. The
all nodes in the lattice were computed by solving the matrixmultipeak structure oP, P;, andP. is evident. The distri-
of network Kirchhoff's equations. To solve it, unlike in usual butions are composed of several peaks shifted on-thee
percolation problems, we have used a direct method of solaXIs.
ing matrix linear equations. It is because we have found in- The first peak inP or/andP. is related to the spectrum
direct methods not convergent in the case when condud(«). When rescaled, i.e., redrawn in coordinates
tances of the components that build the TCRRN differ bylnP/InL=InP./InL versus—Ine/InL=—In(zA/InL, as shown
many orders of magnitude. in Fig. 3, it asymptotically takes the shape of spectrum

Indirect methods in each iteration improve voltages at evf(«) widely known in the percolation literatuté** (how-
ery node of the lattice by a small amount which is calculatedever mostly ford=2 dimensions The collapse of the high-
to balance the currents in every node. If the network containgoltage part of the spectrum for differehtis easily seen.
conductances which differ by several orders of magnitudeThe calculated corresponding exponengg2q)/v for
e.g., it contains conductances d And hSthe balance is 0=0,1,2,3 together with results from other simulations for
determined correctly provided all the voltages are detercomparison are summarized in Table I. For the low-voltage
mined very accuratelgwith 10~ ° precision in our examp)e  part (large a) data do not collapse due to finite-size correc-
If they are notthe error in currentwhich flows through the tion of order 1/In..% The slope of the low-energy part of the
large conductancélS) may exceed the current in the small spectrum is approximately 0.3 far=15 in quite good agree-
one (InS) and the node voltage is corrected in the wrongment with nearly the same value found by Duering and
direction. The iteration procedure is not convergent. Thus w@ergman:3
are forced to use a direct method. Since our matrix is posi- The second peak i (or first in P;) is related to spec-
tive and symmetrical(network matriy we choose the trum ¢(«). This peak, however, is shifted on thelne axis
Cholesky-Banachiewicz methdd. by —Inh as is indicated by the arrow in Fig. 2. This is due to

Once the matrix was solved and node voltages were dehe quantity being used, i.eIne instead of—In(/) as we
termined, the voltages on all bonds in the lattices were caldiscussed above. The shape of the spectibfn) deter-
culated and their populations were gathered into bins sepanined by rescaling data like those in Fig. 2 is shown in Fig.
rately for bondsg. andg;. Three bins per voltage decade 4. We have not found any results with spectreifw) deter-
have been found sufficient enough to reveal the properties ahined, to refer to for comparison. Only exponents for mul-
voltage distribution. To make the data more visible we havaifractal moments fog=1, 2, and 3 were calculated and thus
used the distribution of energies dissipated in the networlkcan be compared with our results. This is done in Table II.
rather than the distribution of network voltages itself. It is As for the spectrunf(«), the collapse of the data as well as
because the distribution of network energiesagreement of calculated exponents is really good, making
P(—Ine)=P;(—Ine) + P,(—Ine) = N; (—In(e/h)) + N.(—Ine) our estimates quite reasonable.
=N;(—Ine+Inh)+N4(—Ine), takes a more familiar form in All the following peaks inP in Fig. 2 arise as a feature of
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FIG. 3. Spectra IR./InL of fractal dimensions describing the FIG. 4. Spectra IR, /InL of fractal dimensions describing the
scaling of voltage distribution in RRN of siZe. The spectra are scaling of voltage distribution in RRSN of size The spectra are
obtained by the use of the data like those in Fig. 2 for variousobtained by the use of the data like those in Fig. 2 for various
values of network sizé& =8(X), 10 (-), 12 (O), 15 (+). Only values of network siz&=8(x), 10 (=), 12(O), 15(+), and for
data which build up the first peak B (or/andP,) in Fig. 2 were  h=10"°. Only data which build up the second peakfir(or first in
used. Data for differenit were adjusted to matcbg=1.72 in the  P;) were used. The valueg used on horizontal axis are obtained
apex. The valuer? used on the horizontal axis is obtained as asv?=e/h. For 1<L < ¢ the spectra reach their asymptotic form of
v’=e. The collapse of data in high-voltage péall ) is excel-  ¢(«). Spectra for different. are shifted in vertical direction so that
lent. For low-voltage partlarge «) data do not collapse due to their maxima coincide witlh=d=23. The line forL=8 is drawn to
finite-size correction of order 1/n For 1<L <¢ the spectra reach guide the eye.
the asymptotic form of (a). The line forL=8 is drawn to guide
the eye. energy dissipated in the insulating phase. In Fig. 6 the test of

data collapse is performed. In rescaling we have used re-
the TCRRN. It is interesting that the contribution of the sec-cently estimated values of exponeimts=2.2 (Ref. 33 and
ond peaks in botlP; and P, is immense. The further peaks s/»=0.85 (Ref. 34, which give 1/¢)=3.05 by the
in P; and P, are merely visible and this means that magni-transfer-matrix technique. The agreement is excellent for the
tudesa, andb, in the expansions of Eq$19) and(21) are  high-energy part of the distributiongsmall values of
relatively small fork=2. To measure the shift by which —Ine), whereas much worse for small energiksge values
subsequent peaks B and P, are moved we rescaled data of —Ine). This slow convergence of the low-energy part of
for various values of andL. In Fig. 5 results of simulations the spectrum will be discussed in the next section. The above
for constanth=10"" and two valued =15 andL=8 are  rescaling tests only thie dependence of the distributions. To
shown. As expected the shifts of the second peaks in bottest theh dependence quite similar rescaling was performed.
P; andP are different for different.. Note, however, thatif Data for constant. =8 and two various values df=10"°
Egs.(19) and(21) hold, thesesecond peaks should collapse andh=10"7 as shown in Fig. 7, are rescaled also in Fig. 6.
if displayed in  coordinates R./InL  versus Here the data collapse is observed for the whole spectrum
(= Ine+2In(hLY#)))/InL for the distribution of energy dis- not only for the high-energy part of the distributions.
sipated in the metallic phase or in coordinate8; ImL ver- In Secs. IV and V it was concluded that distributions of
sus (—Ine+Inh+2In(hLY*#))/InL for the distribution of voltage drops in the case when percolation cluster exists and
when it does not exist differ merely in the existence or not of

TABLE I. Exponents—p(2q)/v for q=0,1,2,3 calculated by the first peak irP.. The rest of these distributions should be
the use of the data which form the spectrfita) in Fig. 3, com-  the same. We test this numerically. Voltage distributions for
pared with results from other simulations. Exponents were calcupercolating/nonpercolating samples were gathered sepa-
lated by power-law scaling of the multifractal momemtg, as a

function of lattice size. . TABLE Il. Exponents{(2q) for q=0,1,2,3 calculated by the
use of the data which form the spectrupi«) in Fig. 4, compared
Our result Other sources with the results from other simulations. Exponents were calculated

0(0)/ 172 174 by finite-size scaling of the moment;,(L,h).
- 14 . .

-p(2)lv —-122 -129°-120°-1.219-125"-1.29

Our result Other sources

-p(4)lv —380 -3.80°-367,°-3.77,9-3.80,° —3.83"
—p(6)lv —6.42 —6.50,° —6.05,° —6.36 2(0) 2.99

L) 1.85 1.8521.89,€1.95¢
:Refefence 3L (4 1.53 1.20%1.55,¢ 1,559
Reference 13. (6) 1.43 1.42¢1.39
‘Reference 19deduced from exponenis,).
YReference 32. 4Reference 34.
‘Reference 22. PReference 22.
Reference 1§deduced from exponents,). “Reference 19our exponentg(2q) are exponents- z, of Ref. 19.

9Reference 33. 9Deduced from exponentg, of Ref. 18.



14 192 ANDRZEJ KOLEK 53

1000 1000

100 ¥

R ff\v N y 2N .
01 ’ \’\\7[ f \\'/}i}%“ ™, 01 1 \" f ++++:>:}%a\ DMLY
001 l \, I E‘&" . \i‘l f ] N %‘\&%

‘\ 0.01 X s L \\ .

J °
0.001 ‘ 0.001 o I,

0 10 20 30 40 50 6 70 80 0 10 20 30 4 5 6 70

5
,f#
Pi(-lne)
s 8
o
<
P
3

Pi(-ine)
s

3

++
%
'l:’.A
ry
*
L
o

£

P (-Ine),
P (-Ine),

. ]

-lne -Ine

FIG. 5. DistributionsP. andP; of the local power dissipated in  FIG. 7. DistributionsP, andP; of the local power dissipated in
metallic and insulating phases, respectively, for the TCRRN withmetallic and insulating phases, respectively, for the TCRRN of size
h=10"7 and various values of network siZe. Data are for | =8. Data are for networks with=10"7, (-) and(A), and for
TCRRN of sizeL=8, (—) and(A), and forL=15, (+) and(0J),  h=10"9°, (O) and(+), respectively. Lines foh=10"" are drawn
respectively. Lines are drawn to guide the eye. to guide the eye.

rately. They are shown in Fig. 8. Indeed the major difference,pinion for two reasons. The first one has the same origin
between the distributions is the absence of the th&@hly  yh4t causes the rather poor collapse of the low-energy parts
energeti¢ peak inP. when percolating cluster does not exist. ot 5| the spectra, and will be discussed in the next section.
Apart from this, data generally collapse especially for thethe second one may arise from different populations of
high-energy parts of subsequent peaks. The differences thgbcolating/nonpercolating sampldése observe approxi-
emerge in the low-energy parts of the peaks arise in OUfately 2/3 of nonpercolating samples in the whole popula-
tion) which make the statistical fluctuations in the distribu-

3 tions different.
2 f‘ﬁ;:.__ VII. DISCUSSION AND SUMMARY
2 s o .
S 1 :‘H \,;-_ The distribution of voltage drops in the two-component
z Mea, RRN has a multipeak structure. It is built up from subsequent
0 \\ g member distributions shifted on the voltage axis. This was
) predicted theoretically by scaling analysis and analysis of the
7 o hierarchical model of the two-component random system.
-1 Numerical simulations performed on 3D TCRRN confirm
0 2 4 6 8 10 D M6 this prediction. The collapsing of data is very good but only
(a) (-lne+ 2L P N/inL
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FIG. 6. Tests of collapsing of data from Figs. 5 and 7. Only data
which build (a) the second peak if., (b) the second peak in FIG. 8. DistributionsP. andP; of the local power dissipated in
P;, are used. Points refer to TCRRN with parameters10 °, metallic and insulating phases, respectively, for the two-component
L=15 (d), h=10"7, L=15 (+), h=10"°% L=8 (X) and RRN of sizeL=10 and withh=10"°. Points refer to percolating
h=10"7, L=8 (O). Lines forL=8 are drawn to guide the eye. samples, ¢) and (x), and to nonpercolating samples)) and
Data forL =8 were shifted upward to match the high-energy part of (+), respectively. Lines for percolating samples are drawn to guide
the distributions for L=15. In rescaling the value of the eye. The populations of percolating/nonpercolating samples
1/(ev)=(t+s)/v=23.05 was usedsee texk used in calculations are 481 and 1029, respectively.
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for high-energy parts of subsequent members of the distributhe percolating backbone. Similarly EGL9) describes the
tion. Collapsing is much worse for the low-energy parts ofdistribution of voltages only on insulating bonds which do
these members. A similar effect was observed in classicatot lie on the surface of metallic clusters. The distribution of
multifractal analysis in RRN. It was caused by the break-Eq. (22) would have been thus observed in our simulations
down of power-law scaling for negative multifractal mo- of real TCRRN if we had used an algorithm which had
ments; forg<<O momentsi, do not scale in the power-law counted only bonds belonging to the subsets of bonds de-
manner of Eqs(3) and(8). Instead exponential decay of the scribed above. Our algorithm counts, however, all the bonds
smallest current in the network was observed. This results ifh the lattice. This is the reason why the shapes of subse-

the scaling form ofM,~exg(—B+ax)L?] for q<02%3®  guent member distributions obtained from the simulations
The influence of this effect on the shape of multifractal specare not similar tof(a) or ¢(«). The distributionN,; ob-
trum f(a) is still the subject of controversy and different tained in the simulations apart from the contributiégf,
fgf?:ri:;? ?)rfbor;otsheeao,bl?gg vior di(«) for large a have been cominf? ) If(rho?/? ) backbone  bonds, ie., “é_;;f
: _ a+2 In(hL M0 ; S
Theoretical analyses performed in Secs. Ill, IV, and V r?lh ¢ d cor|1_ta|ns glso tdhe contrtlbutllor?lcl ’ Simi
predict a semiperiodic structure of voltage distribution in'V €N COMES ITom dangling ends and Separate clusters. simi-

iatribg it N BB

which multifractal spectrd () and ¢(«) are repeated with |21y distributionN;, apart from the contributior;”, com-

the period of 2InLY"9))/InL. However, numerical simula- ing from bonds which do not lie on the surface of metallic
. ' . « U(vg) .

tions show the subsequent peaks are not only shifted on tHausters, I.e.,l\lﬁB:alLaﬁ( +2n0L)  contains also the

y axis but also have different shapes, especially near therontribution, NFlB, which comes from bonds lying on the

maxima. This is a new effect which may suggest that newsyrface of metallic clusters. The distributionS® and N5?
sets of independent exponents appear in our system. Beloyhnhear on the axis in places where the distributione?

we discuss this problem in a more detailed way. andNEP are located, i.e., they are shifted towards low ener-

g'rSt (;et lfts TjOts f[?at _thet above feﬁect?tc?n be eTplalneEieS by 2 InbLY("¥)). These shifts are well understood as we
and unacerstood betler n terms of qualitaive analysiS ol ,.e giscussed aboyeee also the analysis in Sec).V

transport Processes .WhiCh. take place in the TCRRN'.Th(? first Now the question arises, whether these new distributions,
peak in the distributiorN, is related to currents flowing in both Ny, Niy anng‘? andNT, scale or not, i.e., whether

the backbone of the percolating cluster.gf>0 currents : : : . :
start flowing in the insulating phase. The first peakNp the mul_t|fractal formallsm could be applied to describe thelr_
properties. The answer is not easy. On one hand, these dis-

describes their distribution. This is, however, not the only". “*- . :
ributions appear in the low-energy part on thexis where

effect. The other is that dangling ends and isolated metalli%here is no scaling as we have mentioned in the beginning of
clusters, which in ideald;=0) RRN carry no currents, now . . . . L
¢i=0) y éhIS section. It is obvious that distributioi; andN¢, de-

carry currents that flow through the insulating phase. Thu ; .

they are of ordeh. This is the origin of the second peak in pepd not only on the geometry of appropriate perqolauon

N. N... Thus it turns out thal.. describes also the distri- object. For example the distribution of voltage drops in dan-
c el cl ling ends depends not only on their geometry but also on

bution of voltage drops in dangling ends, isolated cluster he distribution of voltage drops in the percolating cluster as
and all other metallic bonds which are “wetted” by currents o oltage drop P g clustel
well as inside the insulating phase. Thus the distributions

when insulating phase takes finite valgg>0. It is obvious : : o
that they form a percolation object different from percolating.'\|i0 andN, are both involved in buildingl;, andN, . Now
if we note that there is no scaling in the low-energy parts of

cluster. Thus it is not surprising that,; and N, have dif- . : . .
ferent shapes especially near the apex where the influence '(\#0 andNe it may occur that there is no scaling not only in
the low-energy parts dij; or N.;.

the geometry of the percolation object is the most significant. On the other hand. let us note that multifractal moments

Similarly N;j; is the distribution of voltage drops on bonds M. f lati | determined v b
which form the perimeter of metallic clusters, i.e., bonds, cd or nonpercoialing sampes are determined mainly by

which in RRSN never carry currents since they lie on surfacd® S|.str;\t?ut|onNCI1:.wh|chT|r|]1 this ca?e aplpearsf as the first
of superconducting medium and thus are biased by zero vol®2 ¢ n ° 1(52e§ . Igﬁ'$ © ;estbo scallngdo mcf)mii?nt(sj
age. In case of two-component RRN they start carrying cur-''cd orq=1,2,3 n this case has been already perfornied.

rents due to nonzero voltages on non—ideal—superconductir%fOW if we look at Fig. 8 where the shapes of tNe,’s in

bonds. Similar qualitative explanation of further peaks in ercolatmg/nonpgrcolatlng sampl_es are nearly the same, we

N; andN_ is also possible may expect that in general positive moments calculated for
1 C .

Were thus the analyses given in Secs. IlI, IV, and Vthe distributionN.; do scale. This means that multifractal

wrong? To answer let us recall that multifractal momentsiormalism could be used to describe the high-energy part of

M, andW, introduced in Sec. Il are definahly for current Ney. This is confirmed in view of our Flgs:(ﬁ) and 6b).
carrying bonds This fact is obvious if we realize that, for Moreover exponents found in the te;t mennongd a )
example, the scaling of zero-order momég is described [~ p(zq)’qu/.‘P]/” In agreement W't.h our scaling a”"f"ys's
by fractal dimension of the percolating backbobe,. Since of Sec._ I.V' This means that the regions N, responsible
multifractal momentsM ., and W, introduced in the begin- for p03|t|ye moments, has the same shape as the spe_ctrum
ning of Sec. Il are maiched to momerii, andW,, in the f(e). This may further mean m%ﬂcl has aBgtructurg_Bm
limit h—0, this means thal ., andW,, are defined for the Which eitherNcy is followed by Ncy” or bothNcy and N

same set of bonds for which momeni, and W, are de- have thel/ fronts (high-energy parys which scale like
fined. Now it is clear that our equati¢@l) describes, in fact, L(@*+2nOL)inh) - Nymerical simulations would certainly
distribution of voltages only on metallic bonds belonging togive some new arguments here.
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Another question is, whether it is possible to solve the Very recently Monte Carlo simulations of current distri-
problem by redefinition of multifractal moments so that sum-bution in 2D TCRRN has also been perfornfédhe authors
mation in the definitions in the beginning of Sec. Il is ex- have obtained a fine two-peak structie case of current
tended from backbone bonds only over all current carryinglistribution overlapping does not ocguin this case simu-
bonds. This would lead directly to calculation of voltage dis-lations were performed fdr=0.0001 and-=60, i.e., in the
tribution in TCRRN. Such a redefinition makes the range offfactal region sincg=100>L=60. In spite of this the shift
a in which the distribution can be reconstructed limited.PY WhichNc, is expected to be moved onilaxis is only of
Note that in this casg=0 moments cannot be written in the 1.02 which means that in fabt;, andNc; (andN, which is
form of Egs.(14) or (15) and consequently expanded in a shifted by 2.04do_ overlap each other and form one common
form of Eq. (17). Indeed, for example foh=0 we have peak. The same IS mi.o a.ndNil andN;, and thus only two
M o~ LPe whereas for any1>0 in the limitq—0 we have Eeaks I|n t?e whﬁle d|st1||but|on are obsI;erk\]/ed. ITh(la authqrs
Mos~LY. If we, however assume that for=1 redefined trﬁaveti ansob |ttgd t ei sr:naG cuorlrentrparr; OnttV\? cafcu r?éed_rﬂls-
multifractal moments do scale like those in Sec. lll, the in- ution Ly saussian, 00d agreeme as found. 1hey

. . . were prompted to make this approximation by their earlier
verse Laplace transform is well defined only if the saddl€gejyation of current distribution in a hierarchical diamond

point is located ag's greater than 1, i.e., for values affor  |atice which consisted of two types of conductance. In this
which case they have found such an approximation reasonable, de-
spite that several peaks in the distribution calculated for
0<——<—-=| =( h=10"° andL=28 are also visible. The authors, however,
Jq 9l clearly stated that one should take the analogy between real
. TCRRN and hierarchical diamond lattice with caution. In
or for a values ofx for which view of our present results this remark is essential. We do
Uw Uy not think that distribution of currents flowing in real TCRRN
2kIn(hL™") a<2k|n(hL ") + k. could be Gaussian.
InL InL In summary the distribution of voltage drops in the two-
component RRN has been described. It is composed of sev-
eral peaks, the member distributions, shifted subsequently on

The latter describes intervals af in which the high-energy

arts of subsequemM,,’'s are located. This is consistent with ; -
gur carlier remqarks ck —In(xA) axis by amount of 2 IH{LY¥)). Member distribu-

Finally let us refer to the results of other authors. VoltagetIons describe voI'tage dr.ops in either the metallic phase—
distribution in TCRRN was calculated by Monte Carlo simu- MeMPersNey, or in the insulating phase—membelg, .
lations of 2D square lattice in Ref. 16. Simulations were ! "€ Zero-order member of i, family is governed by the
performed for the values d¢f=0.001 and_ = 100. In 2D we multifractal spectrunf(«) found originally for RRN. The

have ¢»=0.5' and £=h~"¢=32<L =100 and this means zero-order member of thi;, family is governed the multi-

that voltage distribution in homogeneous rather than in frac{ractal spectrump(a) found originally for RRSN. The next

tal region was calculated. In the homogeneous region th@embers are built from two components. The first one is the

distribution is quite different; i.e., it is & function peaked at Scaled repetition oNg, for the N, family or Nj, for the
a value of voltage equal t® 2. Thus for the values oh N; family. The other one is the distribution of voltage drops

and L used in the simulations a multipeak structure of theln such percolation objects like dangling ends, isolated clus-

distribution (which is valid in fractal regionstarts changing s for theN, family or clusters perimeter for thig; fam-
toward a singles function as was discussed in Ref. 37. ThelY-
authors displayed voltage distribution directly, i.e., versus
Inv on the horizontal axis, so that overlappinghf andN;

takes place. Nevertheless it is possible to distinguish between The author would like to thank P. Januszewski for the
fronts of N, andN; in the histograms. One cannot find fur- critical reading of the manuscript. The useful discussions
ther peaks ilNtcrrn, due to collapsing of all the peaks in with A. Kusy, A. A. Snarskii, P. Pusz, and W. Pusz are also
the homogeneous region. gratefully acknowledged.
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