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A disordered medium composed of randomly arranged metal and insulator, both with finite conductance, is
considered. The distribution of voltage dropsy in such two-component random system has been calculated
both analytically and numerically. It is shown that the distributionN(y) of the logarithm of voltage drops,
y52 ln(y2), is the sum of several members,Nck(y) andNik(y), k50,1,2, . . . . MembersNck(y) describe the
voltage distribution in the metallic phase. MembersNik(y) describe the voltage distribution in the insulating
component. The subsequent members are shifted subsequently on they axis by an amount of
2k ln(hL1/(nw)), wherew is the crossover exponent andn is the percolation correlation length exponent. The
zero-order member of theNck family is governed by the multifractal spectrumf (a), wherea5y/ lnL, found
originally for the random resistor network. The zero-order member of theNik family is governed by the
multifractal spectrumf(a) found originally for the random resistor superconductor network. The next mem-
bers are built from two components. The first one is the scaled repetition ofNc0 for theNck family or Ni0 for
theNik family. The other one is the distribution of voltage drops in such percolation objects like dangling ends,
isolated clusters for theNck family or clusters perimeter for theNik family.

I. INTRODUCTION

Transport properties of heterogeneous media have re-
cently attracted much interest because of their relevance to
many industrial applications. When the disorder of the me-
dium is extremely large, percolation theory1 is a very effi-
cient tool of investigation. The properties of electrical trans-
port can be then described by the distribution of voltage
drops in the so-called random resistor network~RRN!. It
turns out that various moments of this distribution have
physical interpretations.2–4 For example, the zero moment
describes the mass of the percolating backbone, the second
one is the network conductance, the fourth is related to re-
sistance 1/f noise whereas the infinite moment is governed
by the so-called singly connected bonds,1–5 i.e., those carry-
ing the largest current in the percolating cluster. It was
shown that at the percolation threshold all positive moments
of voltage distribution scale as power laws of system size
L but with different exponents.2–4,6This leads to the conclu-
sion that the voltage distribution in RRN has a multifractal
structure.2,3,7–9The term ‘‘multifractal’’ means that there is
an infinite ~continuous! set of irrelevant exponentsf (a)
which describe the power-law scaling, as a function of sys-
tem size, of different regionsa of the distribution. The mul-
tifractal spectra were found for the two ideal random resistor
networks. For RRN, i.e., for the network in which ideal in-
sulatorgi50 and normal conductor~metal! are mixed, the
spectrumf (a) which describes scaling of voltage distribu-
tion within the metal was found.3,7–14 For random resistor
superconductor network~RRSN!, i.e., the network in which
the ideal conductorgc5` is diluted in the host of the normal
metal, the spectrumf(a) which describes scaling of the
voltage distribution again in metal was also found.3 Although
in both cases the spectra describe scaling of the voltage dis-
tribution in the metallic phase, they are related to different
geometrical objects. In the case of RRN the spectrum refers
to percolating cluster whereas for RRSN it refers to the

‘‘rest’’ of the lattice. For dimensionsd.2 those two are
different geometrical objects and thus the spectra have dif-
ferent shapes for RRN and RRSN, i.e.,fÞf for dimensions
d.2.

RRN and RRSN may be considered as the limiting cases
of the more general two-component random resistor network
~TCRRN! in which both components of the mixture take
finite values of the conductance.15 This is also a more real-
istic model of the metal-insulator composite in which non-
zero conductivity of an insulator is taken into account. Al-
ternatively, it is also a more realistic model of the mixture of
metal and real superconductor with small but nonzero resis-
tivity. After some controversy16 it was argued that moments
of voltage distribution in the two-component RRN crossover
from fractal to homogeneous region with thesingle cross-
over exponentassociated with the ratioh of the conductance
of the components,h5gi /gc , irrespective of the moment’s
order.17–23This conclusion leads to important and nontrivial
results concerning the behavior of various physical quantities
in inhomogeneous systems. For example, it was shown that
new critical exponents control the dependence of 1/f noise
intensity on mixture composition in the vicinity of the per-
colation threshold.17–23 Thus the investigations of voltage
distribution in the two-component RRN are very important.
While the first attempt suggests the distribution to be ap-
proximately Gaussian24 our present results do not confirm
this conclusion. We have found that the distribution of the
logarithm of voltage dropsy is composed of several peaks
shifted subsequently on they52 ln(y2) axis by an amount of
2 ln(hL1/(nw)), wherew andn are the crossover exponent and
the percolation correlation length exponent, respectively.

The rest of the paper is organized as follows: In Sec. II we
shortly review the multifractal approach to voltage distribu-
tion in RRN and RRSN. In Sec. III the scaling functions for
moments of current and voltage distributions are introduced
and their new properties are established based on the usual
scaling assumption. In Sec. IV the voltage distribution in the

PHYSICAL REVIEW B 1 JUNE 1996-IVOLUME 53, NUMBER 21

530163-1829/96/53~21!/14185~11!/$10.00 14 185 © 1996 The American Physical Society



two-component RRN is calculated via the inverse Laplace
transform technique as proposed by Fourcade and
Tremblay.9 In Sec. V the alternative derivation of this distri-
bution is given by the use of the hierarchical model of the
two-component random system recently proposed by Moro-
zovsky and Snarskii.17,23 In Sec. VI a large number of com-
puter simulations performed on a three-dimensional 3D
simple cubic lattice is presented to show how the scaling
theory predictions work in real TCRRN. Conclusions and
remarks on topological interpretation of the obtained distri-
bution are given in Sec. VII.

II. MULTIFRACTAL APPROACH

Consider the RRN in which bonds are occupied with
probability p by unit conductance. With probability 12p
bonds are removed. For such a network moments of voltage
distribution may be defined

Wq5(
b

SVb

V D 2q, ~1!

whereVb denotes voltage drop on bondb when external
voltageV is imposed to the network and summation is over
all occupied bonds with nonzero voltages. Some of the above
moments have physical interpretations. For example, the net-
work conductanceG is just the first (q51) moment,
G5W1 . Moments for q50, q52, and q5` have also
physical interpretations as was mentioned in the Introduc-
tion. Above the percolation thresholdpc and forL→`, G
reaches the thermodynamic limit and depends on«[p2pc
andL according to the well-known percolation power law15

G;« tLd22, ~2!

where t is the conductivity exponent. At the percolation
threshold, however, the percolation correlation lengthj di-
verges and relation~2! is never approached, the system is
always in the fractal~self-similar! region.1 In this case the
dependence of conductanceG on sizeL can be obtained by
putting «;j21/n5L21/n into Eq. ~2!, n is the correlation
length exponent.1 Thus forp5pc , W1;L2t/n1d22. In gen-
eral all positive moments defined in Eq.~1! scale withL as
power laws,2,3,7

Wq;L2p~2q!/n ~3!

for q>0. Above we use the notation of Refs. 2, 3, and 7.
Note that it is completely equivalent to define the problem in
terms of current distribution. Exponents2xq which describe
theL dependence of the moments of current distribution4,6

Mq5(
b

S I bI D 2q;L2xq,

where I b is the current in bondb when external currentI
biases the network, are then related to exponentsp(2q)/n

xq5
p~2q!

n
22q

p~2!

n
.

It was shown that exponentsp(2q)/n, or xq , form an
infinite set of independent exponents.2–4,6–9 Some of them

are well known. For example,2p(0)/n52x05DB is the
fractal dimension of the percolating backbone whereas
2p(2q)/n12qp(2)/n52x`51/n for q→`. In the ther-
modynamic limit the« dependence ofWq can be easily ob-
tained if we note that forL@j momentsWq should scale as
(L/j)22q(L/j)dj2p(2q)/n. Thus forj;«2n

Wq;Ld22q« t~2q!,

where exponents3

t~2q!5~d22q!n1p~2q!, t~2![t. ~4!

MomentsWq can be also expressed in terms of voltage dis-
tribution. Let n(y2) be the number of bonds with voltage
dropVb5yV. Then

Wq5E
0

1

dy2n~y2!y2q. ~5!

The asymptotic form ofn(y2) can be derived by the method
proposed by Fourcade and Tremblay.9 Namely Eq.~5! re-
written in terms of new variabley52 ln(y2),

Wq5E
0

`

dyNRRN~y!exp~2qy!, ~6!

whereuNRRN(y)dyu5un(y2)dy2u, may be now considered as
the Laplace transform ofNRRN(y), i.e., the distribution of
the logarithm of voltage drops. HenceNRRN(y) can be ob-
tained by inverting Eq.~6!. Using the saddle-point approxi-
mation they have shown that

NRRN~y!;L f ~a!, ~7!

where a5y/ lnL52ln(y2)/lnL and f (a) is the Legendre
transform of p(2q)/n, i.e., (1/n)@]p(2q)/]q#5a,
f (a)5qa2p(2q)/n. The above equation reads that fora
fixed, f (a) may be interpreted3,7 as a fractal dimension of a
set of bonds characterized by a voltage drop that scales with
size asy2;L2a. f (a) is thus a continuous spectrum of frac-
tal dimensions which characterize different partsa of the
distribution of the logarithm of voltage drops in the network.
Note thatf (a)5DB for q50 and this is the maximum value
of f (a) since any set of bonds characterized by a given
voltage drop is always a subset of the percolating backbone.

Similarly we can describe multifractal properties of
RRSN, i.e., the network in which bonds are occupied by
superconductors~infinite conductance! with probability p.
With probability 12p bonds take unit conductance. Mo-
ments of voltage distribution are then defined by Eq.~1! but
with summation extended over all~unoccupied! bonds with
finite ~unit! conductance over which nonzero voltages are
observed. This change makes the critical exponents in RRSN
different ~for d.2) from that of RRN. Atp5pc and for
q>0 momentsWq scale as3

Wq;Lz~2q!, ~8!

whereas forp,pc andL→` they crossover to

Wq;Ld22qu«us~2q!22qs, ~9!

where
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s~2q!22qs5~d22q!n2z~2q!n, s~2![s. ~10!

Note thats(2)5s is the conductivity critical exponent in
RRSN,z(0)5d, andz(`)51/n. The latter describes scal-
ing of the number of singly disconnected bonds.5,25 The dis-
tribution of the logarithm of voltage drops in RRSN is thus

NRRSN~y!;Lf~a!, ~11!

where f(a) is the Legendre transform of2z(2q), i.e.,
2]z(2q)/]q5a, f(a)5qa1z(2q). As we have already
pointed out the spectraf and f refer to different ~for
d.2) objects and in general they have different shapes.

III. MULTIFRACTAL MOMENTS IN THE TWO-
COMPONENT RRN

Let us consider the random resistor network in which the
effect of nonzero conductance of the insulating phase is
taken into account. In this network the ratio of ‘‘poor’’gi
and ‘‘good’’ gc conductance is given by a small-value pa-
rameter h5gi /gc . Conductancegc occupies bonds of
d-dimensional lattice with probabilityp. Conductancegi oc-
cupies bonds with probability 12p. For such TCRRN mo-
ments of current and voltage distributions should be defined
separately for the insulating (i ) and conducting (c)
bonds17–21,23

Miq5(
b

S I bI D 2q,
Wiq5(

b
SVb

V D 2q,
Mcq5(

b
S I bI D 2q,

Wcq5(
b

SVb

V D 2q,
where I b(Vb) denotes current~voltage drop! in bond b,
which belongs to either (i ) or (c) phase, when external cur-
rent I ~voltageV) is imposed on the network. All the next
results are based on the natural assumption that in the ther-
modynamic limit each of the moments defined above is a
generalized homogeneous functionin the neighborhood of
the pointh50, «5p2pc50, i.e., near the percolation tran-
sition. Important are relations

Wiq5SGgi D
2q

Miq ,

Wcq5S GgcD
2q

Mcq , ~12!

whereG is the conductance of the network. Some of the
features of defined quantities can be easily established. For
h→0 and «.0 we get RRN and thus
Wcq;« t(2q),Mcq;« t(2q)22qt. Similarly for h→0 and«,0
we get RRSN andMiq;u«us(2q),Wiq;u«us(2q)22qs. Let us

now make the usual scaling hypothesis for each of the mo-
ments defined above. First let us draw our attention to the
insulating phase:21

Miq5Miq~«,h!5u«us~2q!miq~h/u«u1/w!,

Wiq5Wiq~«,h!5u«us~2q!22qswiq~h/u«u1/w!,

where w is the crossover exponent. It was proven thatw
takes unique valuew51/(t1s) for all multifractal moments
independent of the moments order, i.e., for allq>0.17–21,23

Note that forh50 momentsMiq are defined both above and
belowpc . Miq(«,0)50 for «.0 andMiq(«,0);u«us(2q) for
«,0. If we further assume thatMiq is singular only at
h50,«50, then for fixed finite«, Miq is not singular and
may be expanded about the pointh50,26

Miq~«,h!5Miq~«,0!1 (
k51

`
1

k!

]kM iq

]hk U
h50

hk. ~13!

Now let us note that for«.0 the conducting percolating
cluster exists and all the currents in the insulating phase scale
as I b5giVb;giV;giI /G;giI /(gc«

t);hI. Consequently
the leading term inMiq scales ash

2q, and this means that the
first 2q21 derivatives in Eq.~13! vanish. Thus we getMiq
expanded up to the first nonvanishing term

Miq~«,h!5Miq~«,0!

1h2qu«us~2q!22q/w
1

~2q!!

]2qmiq~x!

]x2q U
x50

5Miq~«,0!1C1q8 h2qu«us~2q!22q/w.

MomentsWiq can now be calculated by the use of Eq.~12!.
For «,0 we haveG;gi u«u2s and

Wiq~«,h!;u«us~2q!22qs1C1qh
2qu«us~2q!22q/w22qs.

Note that for«,0 we getWiq(«,0);«s(2q)22qs as we ex-
pect, according to Eq.~9!. The latter expression also reads
that in the expansion ofWiq(«,h) about h50 the first
2q21 derivatives,]kWiq /]h

k, vanish ath50. Thus the
above equation is valid also for«.0. This leads us to the
second nonvanishing term in Eq.~13!. For «.0 we get

Miq~«,h!;h2qu«us~2q!22q/w1C2q8 h4qu«us~2q!24q/w5u«us~2q!

3$~h/u«u1/w!2q1C2q8 ~h/u«u1/w!4q%.

If repeated this leads us to the conclusion thatmiq andwiq
are functions of (h/u«u1/w)2q rather than ofh/u«u1/w,

Wiq~«,h!5u«us~2q!22qswiq„~h/u«u1/w!2q…. ~14!

It can be shown in a very similar way that multifractal mo-
ments in the conducting phase obey the scaling form of

Wcq~«,h!5« t~2q!wcq„~h/u«u1/w!2q…. ~15!

The only important difference in derivation of Eq.~15! is
that we should start from expansion ofWcq rather than
Mcq since the former forh50 is defined both for«,0 and
«.0;Wcq(«,0,0)50,Wcq(«.0,0);« t(2q).
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Eventually let us note that to include the dependence of
Wiq andWcq onL in the thermodynamic limit the right-hand
side of Eqs.~14! and~15! should be multiplied by the factor
of Ld22q.

IV. VOLTAGE DISTRIBUTION IN THE
TWO-COMPONENT RRN

In the previous section the new scaling functions of mul-
tifractal moments were derived. They enable us to write the
multifractal moments as series expanded in the neighborhood
of the pointh50 which is the well-studied case of RRSN for
momentsWiq or RRN for momentsWcq . Namely

Wiq~«,h!;Ld22qu«us~2q!22qsS 11 (
k51

`

Ckq~h/u«u1/w!2qkD .
~16!

This expansion, which is valid forL→`, affects the depen-
dence ofWiq on system sizeL for L,j. The latter can be
obtained by the usual finite-size scaling argument. Placing
u«u5j21/n5L21/n in Eq. ~16! and with the help of Eq.~10!
we get

Wiq~L,h!;Lz~2q!S 11 (
k51

`

Ckq~hL
1/~nw!!2qkD . ~17!

The latter tells us that in the two-component RRN moments
of voltage distribution in the insulating phase scale mostly
like in the RRSN@see Eq.~8!#. The influence of the metallic
component appears as the very small correction of order
(hL1/(nw))2q. In the following we will show that this small
correction results from the distribution of voltage drops
which is, however, very different from that of RRSN.

To proceed let us note that like in the case of RRN or
RRSN the asymptotic form of the distributionNi(y) of the
logarithm of voltage drops on insulating bonds,
y52 ln(y2), may be obtained via the inverse Laplace trans-
form of momentsWiq ~Ref. 9!,

Ni~y!5L21@Wiq#5L21@C0qL
z~2q!#

1 (
k51

`

L21@Ckqh
2qkLz~2q!12qk/~nw!#.

The first term in the sum above leads to the distribution
NRRSN(y) as it was shown for RRSN@see Eqs.~8! and~11!#.
The inverse Laplace transforms of the next terms

L21@Ckqh
2qkLz~2q!12qk/~nw!#5

1

2p j E2 j`

1 j`

dqexp@ lnCkq

12qkln~hL1/~nw!!

1z~2q!lnL1qy#[Nik~y!,

~18!

where j 2521, can be calculated by the saddle-point ap-
proximation. If we assume thatCkq depends weakly onq, the
argument in the exponential is extremum for a value ofy
such that

2kln~hL1/~nw!!1
]z~2q!

]q
lnL1y50,

or a value ofa5y/ lnL such that

a52
2kln~hL1/~nw!!

lnL
2

]z~2q!

]q
.

As L increases the extremum value of the argument in the
exponential approaches the form of the spectrumf shifted
by amount of 2kln(hL1/(nw))/ lnL on thea axis

lnCkq1z~2q!lnL2q
]z~2q!

]q
lnL→fS a

1
2kln~hL1/~nw!!

lnL D lnL, for 1!L,j.

Hence the distribution

Nik~y!5akL
f„a12kln~hL1/~nw!!/ lnL…,

where ak5ak(a, lnL) depends weakly on lnL.9 Eventually
the asymptotic form of the distributionNi(y)

Ni~y!5a0L
f~a!1a1L

f„a12ln~hL1/~nw!!/ lnL…

1a2L
f„a14ln~hL1/~nw!!/ lnL…1•••. ~19!

As we have mentioned above, the distributionNi(y) is ap-
proached asL increases but is still in the fractal region, i.e.,
L,j (j;h2nw in the two-component RRN!. As we see the
distributionNi(y) is composed of a number of subdistribu-
tions Nik(y) which are subsequently shifted by
2 ln(hL1/(nw)) on they axis. Each of these subdistributions is
governed by the spectrumf. In the following we will call
the distributionsNik(y) the member distributions.

The distribution of voltage drops in the conducting phase
can be obtained in a similar way. Note, however, that expan-
sion ofWcq(«,h) abouth50 and for«.0 is different from
that for «,0. This is becauseWcq(«.0,0);« t(2q) whereas
Wcq(«,0,0)50. Thus the first term of the expansion, i.e.,
Wcq(«,0), appears or vanishes depending on the sign of«.
This of course has an effect in the finite-size behavior of
Wcq for L,j, i.e.,

Wcq~L,h!;L2p~2q!/nS B0q1 (
k51

`

Bkq~hL
1/~nw!!2qkD ,

~20!

whereB0q appears or vanishes depending on whether the
percolating cluster exists or not. The inverse Laplace trans-
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form technique applied to momentsWcq gives the distribu-
tion of the logarithm of voltage drops in the conducting
phase

Nc~y!5 (
k50

`

Nck~y!5 (
k50

`

bkL
f „a12kln~hL1/~nw!!/ lnL…, ~21!

wherebk5bk(a, lnL) depends weakly on lnL and b050 if
the percolation cluster does not exist. The form of Eq.~21! is
approached forL@1 but still L,j. Like in the insulating
phase the distributionNc(y) is a sum of member distribu-
tionsNck(y) shifted subsequently by 2 ln(hL1/(nw)) on they
axis. However, unlike in the insulating phase, each member
of the sum is governed by the multifractal spectrumf (a)
obtained originally for RRN rather than by the spectrum
f(a).

Having the distributions in both insulating and conducting
components described we are able to write the distribution of
the logarithm of voltage drops in the two-component RRN

N~y!5Ni~y!1Nc~y!5 (
k50

`

@Nck~y!1Nik~y!#. ~22!

The distributionN(y) has a ‘‘multipeak’’ structure in which
the distributionsNRRN(y) andNRRSN(y) obtained for RRN
and RRSN are rescaled and repeated with a period
2 ln(hL1/(nw)) on they axis.

In the next section an alternative derivation ofN(y) is
supplied. While much simpler, it is based however on the
hierarchical model of the two-component RRN and thus has
less general meaning. In the section after the next, computer
simulations performed on 3D TCRRN are presented in order
to check the predictions of scaling analysis given above.

V. HIERARCHICAL MODEL

Recently the very useful and powerful hierarchical model
of the two-component percolating system has been
proposed.17,23 In the model conductanceGc in Fig. 1 repre-
sents metallic~first! component whereas conductanceGi rep-
resents the ‘‘insulating’’~second! component. It is assumed

that at the percolation threshold and forL,j,
Gc;gcL

2p(2)/n andGi;giL
z(2) as in Eqs.~3! and ~8!, re-

spectively. The existence or not of the percolating cluster
manifests itself only at the first level of iteration as it is
shown in Fig. 1. In order to derive the voltage distribution let
us assume that voltages appearing inside elementsGc and
Gi obey the distributionsNRRN(y) andN RRSN(y), respec-
tively. If a constant voltageV biases the structures in Fig. 1
the voltages appearing on elementsGc are V0c5V and
V1c>VGi /Gc when a percolation cluster exists@Fig. 1~a!# or
V1c>VGi /Gc if it does not exist@Fig. 1~b!#. It is because in
the h→0 limit we havegi!gc and alsoGi!Gc . Voltages
on elementsGi areV0i>V in either cases. In the second step
of generation elementGc which is in series withGi is re-
placed by the whole branch like those in Fig. 1~a!. Conse-
quently voltages that appear on new elementsGc andGi are
V2c>V1cGi /Gc andV1i>V1c . At the k11 level of genera-
tion new voltages ofV(k11)c>VkcGi /Gc>V(Gi /Gc)

k11

andVki>Vkc>V(Gi /Gc)
k appear on elements added in this

level. In each of the elements voltages obey the distribution
NRRN„2 ln(Vb

2/V(k11)c
2 )… for elements Gc or

NRRSN„2 ln(Vb
2/Vki

2 )… for elementsGi . Thus the total distribu-
tion is the sum of all the contributions added during the
generation

N~y!5 (
k50

`

NRRN„2 ln~Vb
2/Vkc

2 !…1NRRSN„2 ln~Vb
2/Vki

2 !…

5 (
k50

`

NRRN„2 ln~Vb
2/V2!1 ln~Vkc

2 /V2!…1NRRSN„2 ln~Vb
2/V2!1 ln~Vki

2 /V2!…

5 (
k50

`

NRRN@y12kln~Gi /Gc!#1NRRSN@y12kln~Gi /Gc!#5 (
k50

`

NRRN@y12kln~hL1/~nw!!#1NRRSN@y12kln~hL1/~nw!!#

5 (
k50

`

b0L
f ~a12kln~hL1/~nw!!/ lnL !1a0L

f~a12kln~hL1/~nw!!/ lnL !,

FIG. 1. Hierarchical model of the two-component random per-
colating system. Figures represent the first level of generation in
case when~a! percolation cluster exists,~b! percolation cluster does
not exist. In the next steps of generation conductanceGc which is in
series withGi is replaced by a branch as in Fig. 1~a!.
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where we have made use of relation
p(2)/n1z(2)5(t1s)/n51/(nw) as given by Eqs.~4! and
~10!. Thus the periodic multipeak structure of voltage distri-
bution is derived again. Note, however, that unlike the deri-
vation based on the scaling assumption this derivation pre-
dicts constant amplitudes of subsequent member
distributions which build up the total distribution. Let us also
note that like the previous one, the present analysis predicts
vanishing or not of the first term in the distributionNc . This
is obvious if we look at Fig. 1 where different first level
generators are assumed depending on whether the percolat-
ing cluster exists or does not. Let us eventually note that
more detailed treatment of the problem is possible if we use
the new model of two-phase systems working inside the
smearing region,27 i.e., for u«u,hw instead of the model of
Fig. 1.28

VI. NUMERICAL SIMULATIONS

To test results obtained in the previous sections we have
performed computer simulations of the 3D TCRRN. In each
computational step a simple cubic lattice of linear sizeL, in
which bonds were occupied randomly with probabilityp by
conductancegc51 was generated. The remaining bonds take
valuegi5h. Once the lattice was generated, conductances of
all the bonds were stored in a band matrix of network equa-
tions and unit dc external voltageV51 was applied to the
opposite sides of the lattice. Free boundary conditions were
assumed in the remaining two directions. Next, voltages of
all nodes in the lattice were computed by solving the matrix
of network Kirchhoff’s equations. To solve it, unlike in usual
percolation problems, we have used a direct method of solv-
ing matrix linear equations. It is because we have found in-
direct methods not convergent in the case when conduc-
tances of the components that build the TCRRN differ by
many orders of magnitude.

Indirect methods in each iteration improve voltages at ev-
ery node of the lattice by a small amount which is calculated
to balance the currents in every node. If the network contains
conductances which differ by several orders of magnitude,
e.g., it contains conductances of 1S and 1nS the balance is
determined correctly provided all the voltages are deter-
mined very accurately~with 1029 precision in our example!.
If they are not,the error in currentwhich flows through the
large conductance~1S) may exceed the current in the small
one ~1nS) and the node voltage is corrected in the wrong
direction. The iteration procedure is not convergent. Thus we
are forced to use a direct method. Since our matrix is posi-
tive and symmetrical~network matrix! we choose the
Cholesky-Banachiewicz method.29

Once the matrix was solved and node voltages were de-
termined, the voltages on all bonds in the lattices were cal-
culated and their populations were gathered into bins sepa-
rately for bondsgc and gi . Three bins per voltage decade
have been found sufficient enough to reveal the properties of
voltage distribution. To make the data more visible we have
used the distribution of energies dissipated in the network
rather than the distribution of network voltages itself. It is
because the distribution of network energies
P(2 lne)5Pi (2lne)1Pc(2lne)5Ni „2 ln(e/h)…1Nc (2 lne)
5Ni(2 lne1lnh)1Nc(2lne), takes a more familiar form in

which the partPi of the distribution is shifted by lnh and
thus does not overlap thePc part of the total distribution.

We have performed simulations for various values of pa-
rameterh51029, 1027 and for various values of the lattice
sizeL58,10,12,15. For each pair of these parameters fixed,
from several hundred forL515 to several thousands for
L58 of network realizations were generated and distribu-
tions P(2 lne) were averaged. In Fig. 2 the distribution
P(2 lne) versus2 lne for h51027 andL58 is shown. The
multipeak structure ofP, Pi , andPc is evident. The distri-
butions are composed of several peaks shifted on the2 lne
axis.

The first peak inP or/andPc is related to the spectrum
f (a). When rescaled, i.e., redrawn in coordinates
lnP/lnL5lnPc /lnL versus2 lne/lnL52ln(y2)/lnL, as shown
in Fig. 3, it asymptotically takes the shape of spectrum
f (a) widely known in the percolation literature3,7–14 ~how-
ever mostly ford52 dimensions!. The collapse of the high-
voltage part of the spectrum for differentL is easily seen.
The calculated corresponding exponentsp(2q)/n for
q50,1,2,3 together with results from other simulations for
comparison are summarized in Table I. For the low-voltage
part ~largea) data do not collapse due to finite-size correc-
tion of order 1/lnL.30 The slope of the low-energy part of the
spectrum is approximately 0.3 forL515 in quite good agree-
ment with nearly the same value found by Duering and
Bergman.13

The second peak inP ~or first in Pi) is related to spec-
trum f(a). This peak, however, is shifted on the2 lne axis
by 2 lnh as is indicated by the arrow in Fig. 2. This is due to
the quantity being used, i.e.,2 lne instead of2 ln(y2) as we
discussed above. The shape of the spectrumf(a) deter-
mined by rescaling data like those in Fig. 2 is shown in Fig.
4. We have not found any results with spectrumf(a) deter-
mined, to refer to for comparison. Only exponents for mul-
tifractal moments forq51, 2, and 3 were calculated and thus
can be compared with our results. This is done in Table II.
As for the spectrumf (a), the collapse of the data as well as
agreement of calculated exponents is really good, making
our estimates quite reasonable.

All the following peaks inP in Fig. 2 arise as a feature of

FIG. 2. The distributionP(2 lne) ~solid line! of the logarithm of
energy dissipated in the two-component RRN of sizeL58, with
gc51 andgi5h51027. Points refer to energies dissipated in me-
tallic bonds~h! distributionPc , and insulating bonds~n! distribu-
tion Pi . Solid line is the sum of the two. The arrow is placed at
2 lne52lnh.
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the TCRRN. It is interesting that the contribution of the sec-
ond peaks in bothPi andPc is immense. The further peaks
in Pi andPc are merely visible and this means that magni-
tudesak andbk in the expansions of Eqs.~19! and ~21! are
relatively small for k>2. To measure the shift by which
subsequent peaks inPi andPc are moved we rescaled data
for various values ofh andL. In Fig. 5 results of simulations
for constanth51027 and two valuesL515 andL58 are
shown. As expected the shifts of the second peaks in both
Pi andPc are different for differentL. Note, however, that if
Eqs.~19! and~21! hold, these~second! peaks should collapse
if displayed in coordinates lnPc /lnL versus
„2 lne12ln(hL1/(nw))…/ lnL for the distribution of energy dis-
sipated in the metallic phase or in coordinates lnPi /lnL ver-
sus „2 lne1lnh12ln(hL1/(nw))…/ lnL for the distribution of

energy dissipated in the insulating phase. In Fig. 6 the test of
data collapse is performed. In rescaling we have used re-
cently estimated values of exponentst/n52.2 ~Ref. 33! and
s/n50.85 ~Ref. 34!, which give 1/(nw)53.05 by the
transfer-matrix technique. The agreement is excellent for the
high-energy part of the distributions~small values of
2 lne), whereas much worse for small energies~large values
of 2 lne). This slow convergence of the low-energy part of
the spectrum will be discussed in the next section. The above
rescaling tests only theL dependence of the distributions. To
test theh dependence quite similar rescaling was performed.
Data for constantL58 and two various values ofh51029

andh51027 as shown in Fig. 7, are rescaled also in Fig. 6.
Here the data collapse is observed for the whole spectrum
not only for the high-energy part of the distributions.

In Secs. IV and V it was concluded that distributions of
voltage drops in the case when percolation cluster exists and
when it does not exist differ merely in the existence or not of
the first peak inPc . The rest of these distributions should be
the same. We test this numerically. Voltage distributions for
percolating/nonpercolating samples were gathered sepa-

FIG. 3. Spectra lnPc / lnL of fractal dimensions describing the
scaling of voltage distribution in RRN of sizeL. The spectra are
obtained by the use of the data like those in Fig. 2 for various
values of network sizeL58(3), 10 (2), 12 ~h!, 15 ~1!. Only
data which build up the first peak inP ~or/andPc) in Fig. 2 were
used. Data for differentL were adjusted to matchDB51.72 in the
apex. The valuey2 used on the horizontal axis is obtained as
y25e. The collapse of data in high-voltage part~smalla) is excel-
lent. For low-voltage part~large a) data do not collapse due to
finite-size correction of order 1/lnL. For 1!L,j the spectra reach
the asymptotic form off (a). The line forL58 is drawn to guide
the eye.

TABLE I. Exponents2p(2q)/n for q50,1,2,3 calculated by
the use of the data which form the spectrumf (a) in Fig. 3, com-
pared with results from other simulations. Exponents were calcu-
lated by power-law scaling of the multifractal momentsWcq as a
function of lattice sizeL.

Our result Other sources

2p(0)/n 1.72 1.74a

2p(2)/n 21.22 21.29,b 21.20,c 21.21,d 21.25,f 21.2 g

2p(4)/n 23.80 23.80,b 23.67,c 23.77,d 23.80,e 23.83f

2p(6)/n 26.42 26.50,b 26.05,c 26.36f

aReference 31.
bReference 13.
cReference 19~deduced from exponentsxq).
dReference 32.
eReference 22.
fReference 18~deduced from exponentsxq).
gReference 33.

FIG. 4. Spectra lnPi /lnL of fractal dimensions describing the
scaling of voltage distribution in RRSN of sizeL. The spectra are
obtained by the use of the data like those in Fig. 2 for various
values of network sizeL58(3), 10 (2), 12 ~h!, 15 ~1!, and for
h51029. Only data which build up the second peak inP ~or first in
Pi) were used. The valuesy2 used on horizontal axis are obtained
asy25e/h. For 1!L,j the spectra reach their asymptotic form of
f(a). Spectra for differentL are shifted in vertical direction so that
their maxima coincide withf5d53. The line forL58 is drawn to
guide the eye.

TABLE II. Exponentsz(2q) for q50,1,2,3 calculated by the
use of the data which form the spectrumf(a) in Fig. 4, compared
with the results from other simulations. Exponents were calculated
by finite-size scaling of the momentsWiq(L,h).

Our result Other sources

z~0! 2.99
z~2! 1.85 1.85,a 1.89,c 1.95d

z~4! 1.53 1.20,b 1.55,c 1.55d

z~6! 1.43 1.42,c 1.3 d

aReference 34.
bReference 22.
cReference 19~our exponentsz(2q) are exponents2zq of Ref. 19!.
dDeduced from exponentsyq of Ref. 18.
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rately. They are shown in Fig. 8. Indeed the major difference
between the distributions is the absence of the first~highly
energetic! peak inPc when percolating cluster does not exist.
Apart from this, data generally collapse especially for the
high-energy parts of subsequent peaks. The differences that
emerge in the low-energy parts of the peaks arise in our

opinion for two reasons. The first one has the same origin
that causes the rather poor collapse of the low-energy parts
of all the spectra, and will be discussed in the next section.
The second one may arise from different populations of
percolating/nonpercolating samples~we observe approxi-
mately 2/3 of nonpercolating samples in the whole popula-
tion! which make the statistical fluctuations in the distribu-
tions different.

VII. DISCUSSION AND SUMMARY

The distribution of voltage drops in the two-component
RRN has a multipeak structure. It is built up from subsequent
member distributions shifted on the voltage axis. This was
predicted theoretically by scaling analysis and analysis of the
hierarchical model of the two-component random system.
Numerical simulations performed on 3D TCRRN confirm
this prediction. The collapsing of data is very good but only

FIG. 5. DistributionsPc andPi of the local power dissipated in
metallic and insulating phases, respectively, for the TCRRN with
h51027 and various values of network sizeL. Data are for
TCRRN of sizeL58, (2) and ~n!, and forL515, ~1! and ~h!,
respectively. Lines are drawn to guide the eye.

FIG. 6. Tests of collapsing of data from Figs. 5 and 7. Only data
which build ~a! the second peak inPc , ~b! the second peak in
Pi , are used. Points refer to TCRRN with parametersh51029,
L515 ~h!, h51027, L515 ~1!, h51029, L58 (3) and
h51027, L58 ~s!. Lines for L58 are drawn to guide the eye.
Data forL58 were shifted upward to match the high-energy part of
the distributions for L515. In rescaling the value of
1/(wn)5(t1s)/n53.05 was used~see text!.

FIG. 7. DistributionsPc andPi of the local power dissipated in
metallic and insulating phases, respectively, for the TCRRN of size
L58. Data are for networks withh51027, (2) and ~n!, and for
h51029, (s) and~1!, respectively. Lines forh51027 are drawn
to guide the eye.

FIG. 8. DistributionsPc andPi of the local power dissipated in
metallic and insulating phases, respectively, for the two-component
RRN of sizeL510 and withh51029. Points refer to percolating
samples, (2) and (3), and to nonpercolating samples,~s! and
~1!, respectively. Lines for percolating samples are drawn to guide
the eye. The populations of percolating/nonpercolating samples
used in calculations are 481 and 1029, respectively.
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for high-energy parts of subsequent members of the distribu-
tion. Collapsing is much worse for the low-energy parts of
these members. A similar effect was observed in classical
multifractal analysis in RRN. It was caused by the break-
down of power-law scaling for negative multifractal mo-
ments; forq,0 momentsWq do not scale in the power-law
manner of Eqs.~3! and~8!. Instead exponential decay of the
smallest current in the network was observed. This results in
the scaling form ofMq;exp@(2b1qx)Lr# for q,0.8,35,36

The influence of this effect on the shape of multifractal spec-
trum f (a) is still the subject of controversy and different
scenarios for the behavior off (a) for large a have been
recently proposed.10,11,30

Theoretical analyses performed in Secs. III, IV, and V
predict a semiperiodic structure of voltage distribution in
which multifractal spectraf (a) andf(a) are repeated with
the period of 2ln(hL1/(nw))/ lnL. However, numerical simula-
tions show the subsequent peaks are not only shifted on the
y axis but also have different shapes, especially near their
maxima. This is a new effect which may suggest that new
sets of independent exponents appear in our system. Below
we discuss this problem in a more detailed way.

First let us note that the above effects can be explained
and understood better in terms of qualitative analysis of
transport processes which take place in the TCRRN. The first
peak in the distributionNc is related to currents flowing in
the backbone of the percolating cluster. Ifgi.0 currents
start flowing in the insulating phase. The first peak inNi
describes their distribution. This is, however, not the only
effect. The other is that dangling ends and isolated metallic
clusters, which in ideal (gi50) RRN carry no currents, now
carry currents that flow through the insulating phase. Thus
they are of orderh. This is the origin of the second peak in
Nc ,Nc1 . Thus it turns out thatNc1 describes also the distri-
bution of voltage drops in dangling ends, isolated clusters
and all other metallic bonds which are ‘‘wetted’’ by currents
when insulating phase takes finite value,gi.0. It is obvious
that they form a percolation object different from percolating
cluster. Thus it is not surprising thatNc0 andNc1 have dif-
ferent shapes especially near the apex where the influence of
the geometry of the percolation object is the most significant.
Similarly Ni1 is the distribution of voltage drops on bonds
which form the perimeter of metallic clusters, i.e., bonds
which in RRSN never carry currents since they lie on surface
of superconducting medium and thus are biased by zero volt-
age. In case of two-component RRN they start carrying cur-
rents due to nonzero voltages on non-ideal-superconducting
bonds. Similar qualitative explanation of further peaks in
Ni andNc is also possible.

Were thus the analyses given in Secs. III, IV, and V
wrong? To answer let us recall that multifractal moments
Mq andWq introduced in Sec. II are definedonly for current
carrying bonds. This fact is obvious if we realize that, for
example, the scaling of zero-order momentM0 is described
by fractal dimension of the percolating backbone,DB . Since
multifractal moments,Mcq andWiq introduced in the begin-
ning of Sec. III are matched to momentsMq andWq in the
limit h→0, this means thatMcq andWiq are defined for the
same set of bonds for which momentsMq andWq are de-
fined. Now it is clear that our equation~21! describes, in fact,
distribution of voltages only on metallic bonds belonging to

the percolating backbone. Similarly Eq.~19! describes the
distribution of voltages only on insulating bonds which do
not lie on the surface of metallic clusters. The distribution of
Eq. ~22! would have been thus observed in our simulations
of real TCRRN if we had used an algorithm which had
counted only bonds belonging to the subsets of bonds de-
scribed above. Our algorithm counts, however, all the bonds
in the lattice. This is the reason why the shapes of subse-
quent member distributions obtained from the simulations
are not similar tof (a) or f(a). The distributionNc1 ob-
tained in the simulations apart from the contribution,Nc1

BB,
coming from backbone bonds, i.e., Nc1

BB

5b1L
f „a12 ln(hL1/(nw))…, contains also the contribution,Nc1

BB,
which comes from dangling ends and separate clusters. Simi-
larly distributionNi1 apart from the contribution,Ni1

BB, com-
ing from bonds which do not lie on the surface of metallic

clusters, i.e.,Ni1
BB5a1L

f„a12 ln(hL1/(nw))…, contains also the
contribution,Ni1

BB, which comes from bonds lying on the
surface of metallic clusters. The distributionsNc1

BB andNi1
BB

appear on they axis in places where the distributionsNc1
BB

andNi1
BB are located, i.e., they are shifted towards low ener-

gies by 2 ln(hL1/(nw)). These shifts are well understood as we
have discussed above~see also the analysis in Sec. V!.

Now the question arises, whether these new distributions,
bothNc1 , Ni1 , andNc1

BB andNi1
BB, scale or not, i.e., whether

the multifractal formalism could be applied to describe their
properties. The answer is not easy. On one hand, these dis-
tributions appear in the low-energy part on they axis where
there is no scaling as we have mentioned in the beginning of
this section. It is obvious that distributionsNi1 andNc1 de-
pend not only on the geometry of appropriate percolation
object. For example the distribution of voltage drops in dan-
gling ends depends not only on their geometry but also on
the distribution of voltage drops in the percolating cluster as
well as inside the insulating phase. Thus the distributions
Ni0 andNc0 are both involved in buildingNi1 andNc1 . Now
if we note that there is no scaling in the low-energy parts of
Ni0 andNc0 it may occur that there is no scaling not only in
the low-energy parts ofNi1 or Nc1 .

On the other hand, let us note that multifractal moments
Mcq for nonpercolating samples are determined mainly by
the distributionNc1 which in this case appears as the first
peak inNc ~see Fig. 8!. The test of scaling of moments
Mcq for q51,2,3 in this case has been already performed.19

Now if we look at Fig. 8 where the shapes of theNc1’s in
percolating/nonpercolating samples are nearly the same, we
may expect that in general positive moments calculated for
the distributionNc1 do scale. This means that multifractal
formalism could be used to describe the high-energy part of
Nc1 . This is confirmed in view of our Figs. 6~a! and 6~b!.
Moreover exponents found in the test mentioned above19 are
@2p(2q)12q/w#/n in agreement with our scaling analysis
of Sec. IV. This means that the regions ofNc1 responsible
for positive moments, has the same shape as the spectrum
f (a). This may further mean thatNc1 has a structure in
which eitherNc1

BB is followed byNc1
BB or bothNc1

BB andNc1
BB

have the fronts ~high-energy parts! which scale like

L f „a12 ln(hL1/(nw))/ lnL…. Numerical simulations would certainly
give some new arguments here.
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Another question is, whether it is possible to solve the
problem by redefinition of multifractal moments so that sum-
mation in the definitions in the beginning of Sec. III is ex-
tended from backbone bonds only over all current carrying
bonds. This would lead directly to calculation of voltage dis-
tribution in TCRRN. Such a redefinition makes the range of
a in which the distribution can be reconstructed limited.
Note that in this caseq50 moments cannot be written in the
form of Eqs. ~14! or ~15! and consequently expanded in a
form of Eq. ~17!. Indeed, for example forh50 we have
Mc0;LDB whereas for anyh.0 in the limit q→0 we have
Mc01;Ld. If we, however assume that forq>1 redefined
multifractal moments do scale like those in Sec. III, the in-
verse Laplace transform is well defined only if the saddle
point is located atq’s greater than 1, i.e., for values ofq for
which

0,2
]z

]q
,2

]z

]q U
q51

[zR8

or for a values ofa for which

2kln~hL1/~nw!!

lnL
,a,

2kln~hL1/~nw!!

lnL
1zR8 .

The latter describes intervals ofa in which the high-energy
parts of subsequentNck’s are located. This is consistent with
our earlier remarks.

Finally let us refer to the results of other authors. Voltage
distribution in TCRRN was calculated by Monte Carlo simu-
lations of 2D square lattice in Ref. 16. Simulations were
performed for the values ofh50.001 andL5100. In 2D we
havewn>0.51 and j>h2nw>32,L5100 and this means
that voltage distribution in homogeneous rather than in frac-
tal region was calculated. In the homogeneous region the
distribution is quite different; i.e., it is ad function peaked at
a value of voltage equal toLd21. Thus for the values ofh
and L used in the simulations a multipeak structure of the
distribution~which is valid in fractal region! starts changing
toward a singled function as was discussed in Ref. 37. The
authors displayed voltage distribution directly, i.e., versus
lny on the horizontal axis, so that overlapping ofNc andNi
takes place. Nevertheless it is possible to distinguish between
fronts ofNc andNi in the histograms. One cannot find fur-
ther peaks inNTCRRN, due to collapsing of all the peaks in
the homogeneous region.

Very recently Monte Carlo simulations of current distri-
bution in 2D TCRRN has also been performed.24 The authors
have obtained a fine two-peak structure~in case of current
distribution overlapping does not occur!. In this case simu-
lations were performed forh50.0001 andL560, i.e., in the
fractal region sincej>100.L560. In spite of this the shift
by whichNc1 is expected to be moved on lni axis is only of
1.02 which means that in factNc0 andNc1 ~andNc2 which is
shifted by 2.04! do overlap each other and form one common
peak. The same is forNi0 andNi1 andNi2 and thus only two
peaks in the whole distribution are observed. The authors
have also fitted the small current part of the calculated dis-
tribution by Gaussian. Good agreement was found. They
were prompted to make this approximation by their earlier
derivation of current distribution in a hierarchical diamond
lattice which consisted of two types of conductance. In this
case they have found such an approximation reasonable, de-
spite that several peaks in the distribution calculated for
h51026 andL528 are also visible. The authors, however,
clearly stated that one should take the analogy between real
TCRRN and hierarchical diamond lattice with caution. In
view of our present results this remark is essential. We do
not think that distribution of currents flowing in real TCRRN
could be Gaussian.

In summary the distribution of voltage drops in the two-
component RRN has been described. It is composed of sev-
eral peaks, the member distributions, shifted subsequently on
2 ln(y2) axis by amount of 2 ln(hL1/(nw)). Member distribu-
tions describe voltage drops in either the metallic phase—
membersNck , or in the insulating phase—membersNik .
The zero-order member of theNck family is governed by the
multifractal spectrumf (a) found originally for RRN. The
zero-order member of theNik family is governed the multi-
fractal spectrumf(a) found originally for RRSN. The next
members are built from two components. The first one is the
scaled repetition ofNc0 for the Nck family or Ni0 for the
Nik family. The other one is the distribution of voltage drops
in such percolation objects like dangling ends, isolated clus-
ters for theNck family or clusters perimeter for theNik fam-
ily.
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