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Extensive numerical studies of quantum percolation in 2D show no indications of localization—
delocalization transition. At the percolation threshold, i.e. for p = p, the scaling curve =0 1n g/0 In L
exhibits a fractal-like behavior. For In g <« 0 it senses superlocalization: it has the slope d, = 1.14.
For In g > 0 it saturates at —#/v + d — 2 = — 1, where ¢ and v are percolation critical exponents.
For small size L (~10) of percolation cluster the distribution of variable 1; = arccosh (1//T}),
where T is the first transmission eigenvalue, has the exponential tail P(4;) ~ exp (—4;), which is
characteristic for chaotic cavities with one-moded leads. For intermediate sizes P(1;) changes to
Wigner surmise typical for metallic states. For large sizes the shape of P(1;) results from the
“convolution” of the first Lyapunov exponent y; (which is Gaussian) and chemical length / (which
has a tail for large /). For p > p. we observe a crossover from fractal-like behavior for L < &, &,
is the percolation correlation length, to Euclidean-like behavior, characteristic for homogeneous
disorder, for L > &,.

Recent series expansion studies (see e.g. [1]) suggest that there is a localization—deloca-
lization transition in 2D quantum percolation, which is in contradiction to some numer-
ical results (see e.g. [2]). Apart from this controversy another question arises: On one
hand, quantum percolation can be considered as a kind of random potential and its
conductance g is expected to follow the universal scaling curve f = 01n g/0 In L with
the limits fg o« d — 2 = 0 for Ing > 0 and fg « In g for In g < 0. On the other hand,
at the threshold concentration of sites p = p. the percolation cluster (p.c.) has a fractal
geometry for which the fS-curve is quite different [3], fp ox — t/v + d — 2 = — 1 for
Ing > 0and fr x dy In g for In g < 0. Here either dy =1 [3] ordy = §; =2 1.15 [4] and ¢, v
and §; are percolation critical exponents for conductivity, correlation length, and chemi-
cal distance, respectively. In this paper, the results of extensive numerical simulation of
quantum percolation on a square lattice are presented. Tight binding Hamiltonian with
hopping restricted to nearest neighbors and on-site disorder are used. The conductance
exp ({In g)) averaged in the ensemble of 50000 configurations of L x L square lattice
inserted into infinite, disorder-free L-wide strip is calculated for increasing size up to
L =100. The results presented in Fig. 1 reveal the following behavior: (i) For p = p. the
conductance shows superlocalization [4, 5]. The exponent dy = 1.14 is found in good
agreement with the conjecture d, = ;. This result is not so obvious if we note that our
calculations are performed in the middle of the band, i.e. for £ = 0.5, where by the
theory only the relation 1 < dy < ¢ holds [4]. (ii) For p > p. and in the limit L — oo
data follow Sg — the scaling function for 2D (Euclidean) space. This means that no
indications of localization—delocalization transition is found. (iii) The limit L. — oo in
(ii) reads L > &, where &, is the percolation correlation length. Since the latter di-
verges at the percolation threshold, &, ~ (p — p.)~", we observe that for p > p. (e.g.
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Fig. 1 (online colour). Comparison of j curves for a) quantum percolation and b) Anderson model
with a box distribution of site energies (both in 2D). Symbols refer to different a) concentrations p
of sites: p = p. = 0.5973 (O), 0.65 (2), 0.7 (13), 0.75 (V), 0.8 (©), 0.85 (<), 0.9 (>), b) widths W of
box distribution: W =7 (0), 6 (2), 5 (1), 4 (V), 3.5 (<), 3 (>), 2.5 (¢), 2 (5¢). Labels along the
traces indicate size L of the lattice. Lines drawn in a) show the expected shapes of § in Euclidean
(index E) and fractal (index F) geometries

for p = 0.9) data “enter” fg-curve for relatively small L of several lattice spacings. In
contrast, for p — p, lattices as large as 30 x 30 (see e.g. p = 0.65 in Fig. 1a) are too
small to reach fSg-curve. (iv) In the limit L < &, data follow fr — the “fractal” scaling
curve. Unfortunately, this limit can be achieved only for p = p., where &, is sufficiently
large. This is the case described in (i). (v) What we mostly observe is the region L = &,
in which there is the crossover from fractal to Euclidean scaling. Since &, is a function
of p the crossover curve is unique for each p. For large values of p (p > 0.75) the cross-
over is in the “metallic” regime, where g = —1 and g = 0. As a result the crossover is
nonmonotonic: S rises from —1 to 0 and then drops down following Sg curve. Tuning p
we may find such crossover curve which takes the shape of horizontal line. In this case
(p = 0.7) a power law localization is observed for quite a large range of L.

The criticism that one could make against the above picture is that traces for differ-
ent values of p diverge at small sizes due to entering ballistic regime and are observed
also for the ordinary Anderson model with a box distribution of site energies (see
Fig. 1b). When disorder (W or 1 — p) increases the mean free path decreases and dis-
persion of the curves should occur for smaller and smaller sizes. Indeed, such a beha-
vior is observed in case of box distribution in Fig. 1b, and for quantum percolation for
p =0.9, 0.85, and 0.8, where with 1 — p increasing, the size necessary to enter g curve
drops from 12 to 9. Starting from p = 0.75 this tendency reverts: for p = 0.65 we need
as much as L = 30 to reach the universal g curve. This behavior cannot be explained
in terms of crossover to ballistic regime but it is consistent with the fractal-to-Euclidean
crossover as we have already explained in (iii).

Another argument we would like to call in support of the picture of quantum perco-
lation presented above is the distribution of the first Lyapunov exponent y;. We have
chosen this quantity because for infinite percolation cluster it is the only Lyapunov
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Fig. 2 (online colour). Distributions of a) variable 4; = arccosh (1/4/T}) for percolation cluster at
p = p. for various size L = 75 (1), 30 (0O), 15 (&), 10 (V), b) eigenvalue T; for L = 10 for the
whole 50000 population of configurations (V), 39780 configurations which contain SCB’s (+).
Lines in a) are the plots of Wigner surmise: P(1;) = wA1(2(41)%) exp (—wAi/(A1))%/4) with (11) = 5.042
for L =30 (solid) and exponential decay P(4;) ~ exp (—4;) (dashed). Line in b) is the plot of
w(Ty) = 1/(2 v/T1). Inset: Gaussian fit to the distribution of y; = A1/l for L = 75

exponent which survives. It is well known that p.c. at criticality exhibits a one dimen-
sional geometry. It is composed of irregular blobs connected by the so-called singly
connected bonds (SCB) [6]. The latter, if cut, disjoin the cluster into separate pieces
making transport impossible. For quantum transport SCB plays the role of one-mode
constrictions with only one eigenchannel T being open. The crossover from fractal to
Euclidean behavior should be accompanied with simultaneous change of the distribu-
tion of y;. In strongly localized regime and for fractal geometries it should be Gaussian
provided the chemical length [ is involved in its definition [7, 8]. Namely, y; = A1/,
where T; = cosh™? ;. On the contrary for homogeneous disorder the distribution is
Gaussian if it is calculated in ordinary “air distance” way, y1 = A1/L [9]. One can easily
check this change of distribution performing simulations for e.g. p = 0.65 and for ener-
gies near the band edge, where the wave functions are strongly localized [10] (see also
the inset of Fig. 2a). Of more interest and controversial is the crossover in weakly loca-
lized or metallic regime. In Euclidean geometries the distribution of y; in this regime is
Wigner surmise (WS) [9, 11]. In 2D one can approach this distribution for low disorder
as the limit for decreasing L. For fractal geometry of p.c. this is not the case! Here with
L decreasing WS is only an intermediate case observed for L = 30 (see Fig. 2a). As L
is further decreased, a long tail which is well fitted by P(41) ~ exp (—41) grows for large
values of A;. We attribute this behavior to the (fractal) structure of p.c. For sizes as
small as L ~ 10 most configurations have only one blob connected to the rest of the
systems via two SCB’s. It works like a cavity with two one-moded leads. Because of
rough boundaries electron diffusion in such cavity is chaotic. In this case the distribu-
tion of (the only) transmission eigenvalue is known to be w(Ty) = 1/(2y/T7) [12]. In
Fig. 2b the distribution of T; for p = p. and L = 10 is shown. When (few) configurations
which contain no SCB’s are excluded from 50000 population the agreement with w(7})
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Fig. 3 (online colour). Distribution of normalized variable 4;/(1;) for p = 0.7 and various sizes
L =10 (), 20 (0), 50 (&), 160 (V) of p.c. Lines are the plots of WS (solid), Gauss (dotted) and
exponential decay P(11) ~ exp (—4;) (dashed)

is excellent. This explains the origin of exponential tail in the distribution of 4;: In the
limit 77 — 0 we have T; = 4exp (—24;) and the form of P(4;) ~exp (—4;) stems
directly form w(T7) dTy = P(41) dA;. We conclude that exponential tail in the distribution
of A1 is the sign of the fractal geometry of p.c. in the metallic regime. We should expect
such tails if the fractal-to-Euclidean crossover takes place in this region. A certain
example is the case p = 0.7 for which the crossover in Fig. 1a is observed for g =~ 1. In
Fig. 3 the distributions of A; for this case are shown for various sizes. For L = 50 it is
WS. As the size increases the distributions change towards Gaussian. These two are
consistent with Euclidean behavior as data in Fig. 1a for L > 30 lie on fg-curve. For
L <30 data in Fig. 1a crossover to fractal geometry. The signs of this are visible also in
P(41): For small size a tail, which eventually achieves exponential limit, grows up.
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