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Extensive numerical studies of quantum percolation in 2D show no indications of localization–
delocalization transition. At the percolation threshold, i.e. for p = pc, the scaling curve b � @ ln g/@ ln L
exhibits a fractal-like behavior. For ln g � 0 it senses superlocalization: it has the slope df ffi 1.14.
For ln g � 0 it saturates at –– t/n + d –– 2 ffi –– 1, where t and n are percolation critical exponents.
For small size L (�10) of percolation cluster the distribution of variable l1 = arccosh (1/

ffiffiffiffiffiffi

T1
p

),
where T1 is the first transmission eigenvalue, has the exponential tail P(l1) � exp (––l1), which is
characteristic for chaotic cavities with one-moded leads. For intermediate sizes P(l1) changes to
Wigner surmise typical for metallic states. For large sizes the shape of P(l1) results from the
“convolution” of the first Lyapunov exponent g1 (which is Gaussian) and chemical length l (which
has a tail for large l). For p > pc we observe a crossover from fractal-like behavior for L � xp, xp
is the percolation correlation length, to Euclidean-like behavior, characteristic for homogeneous
disorder, for L � xp.

Recent series expansion studies (see e.g. [1]) suggest that there is a localization–deloca-
lization transition in 2D quantum percolation, which is in contradiction to some numer-
ical results (see e.g. [2]). Apart from this controversy another question arises: On one
hand, quantum percolation can be considered as a kind of random potential and its
conductance g is expected to follow the universal scaling curve b � @ ln g/@ ln L with
the limits bE / d –– 2 = 0 for lng � 0 and bE / ln g for ln g � 0. On the other hand,
at the threshold concentration of sites p = pc the percolation cluster (p.c.) has a fractal
geometry for which the b-curve is quite different [3], bF / –– t/n + d –– 2 ffi –– 1 for
ln g� 0 and bF / df ln g for ln g� 0. Here either df = 1 [3] or df = zl ffi 1.15 [4] and t, n
and zl are percolation critical exponents for conductivity, correlation length, and chemi-
cal distance, respectively. In this paper, the results of extensive numerical simulation of
quantum percolation on a square lattice are presented. Tight binding Hamiltonian with
hopping restricted to nearest neighbors and on-site disorder are used. The conductance
exp (hln gi) averaged in the ensemble of 50000 configurations of L 
 L square lattice
inserted into infinite, disorder-free L-wide strip is calculated for increasing size up to
L = 100. The results presented in Fig. 1 reveal the following behavior: (i) For p = pc the
conductance shows superlocalization [4, 5]. The exponent df ffi 1.14 is found in good
agreement with the conjecture df = zl. This result is not so obvious if we note that our
calculations are performed in the middle of the band, i.e. for E = 0.5, where by the
theory only the relation 1 � df � zl holds [4]. (ii) For p > pc and in the limit L ! 1
data follow bE – the scaling function for 2D (Euclidean) space. This means that no
indications of localization–delocalization transition is found. (iii) The limit L ! 1 in
(ii) reads L � xp, where xp is the percolation correlation length. Since the latter di-
verges at the percolation threshold, xp � (p –– pc)––n, we observe that for p � pc (e.g.
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for p = 0.9) data “enter” bE-curve for relatively small L of several lattice spacings. In
contrast, for p ! pc lattices as large as 30 
 30 (see e.g. p = 0.65 in Fig. 1a) are too
small to reach bE-curve. (iv) In the limit L � xp data follow bF – the “fractal” scaling
curve. Unfortunately, this limit can be achieved only for p ffi pc, where xp is sufficiently
large. This is the case described in (i). (v) What we mostly observe is the region L ffi xp,
in which there is the crossover from fractal to Euclidean scaling. Since xp is a function
of p the crossover curve is unique for each p. For large values of p (p � 0.75) the cross-
over is in the “metallic” regime, where bF ffi ––1 and bE = 0. As a result the crossover is
nonmonotonic: b rises from ––1 to 0 and then drops down following bE curve. Tuning p
we may find such crossover curve which takes the shape of horizontal line. In this case
(p = 0.7) a power law localization is observed for quite a large range of L.
The criticism that one could make against the above picture is that traces for differ-

ent values of p diverge at small sizes due to entering ballistic regime and are observed
also for the ordinary Anderson model with a box distribution of site energies (see
Fig. 1b). When disorder (W or 1 –– p) increases the mean free path decreases and dis-
persion of the curves should occur for smaller and smaller sizes. Indeed, such a beha-
vior is observed in case of box distribution in Fig. 1b, and for quantum percolation for
p = 0.9, 0.85, and 0.8, where with 1 –– p increasing, the size necessary to enter bE curve
drops from 12 to 9. Starting from p = 0.75 this tendency reverts: for p = 0.65 we need
as much as L = 30 to reach the universal bE curve. This behavior cannot be explained
in terms of crossover to ballistic regime but it is consistent with the fractal-to-Euclidean
crossover as we have already explained in (iii).
Another argument we would like to call in support of the picture of quantum perco-

lation presented above is the distribution of the first Lyapunov exponent g1. We have
chosen this quantity because for infinite percolation cluster it is the only Lyapunov
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Fig. 1 (online colour). Comparison of b curves for a) quantum percolation and b) Anderson model
with a box distribution of site energies (both in 2D). Symbols refer to different a) concentrations p
of sites: p = pc = 0.5973 (*), 0.65 (~), 0.7 (&), 0.75 (!), 0.8 (^), 0.85 ( ~), 0.9 (

~

), b) widths W of
box distribution: W = 7 (*), 6 (~), 5 (&), 4 (!), 3.5 ( ~), 3 (

~

), 2.5 (^), 2 ($). Labels along the
traces indicate size L of the lattice. Lines drawn in a) show the expected shapes of b in Euclidean
(index E) and fractal (index F) geometries



exponent which survives. It is well known that p.c. at criticality exhibits a one dimen-
sional geometry. It is composed of irregular blobs connected by the so-called singly
connected bonds (SCB) [6]. The latter, if cut, disjoin the cluster into separate pieces
making transport impossible. For quantum transport SCB plays the role of one-mode
constrictions with only one eigenchannel T1 being open. The crossover from fractal to
Euclidean behavior should be accompanied with simultaneous change of the distribu-
tion of g1. In strongly localized regime and for fractal geometries it should be Gaussian
provided the chemical length l is involved in its definition [7, 8]. Namely, g1 � l1/l,
where T1 = cosh––2 l1. On the contrary for homogeneous disorder the distribution is
Gaussian if it is calculated in ordinary “air distance” way, g1 � l1/L [9]. One can easily
check this change of distribution performing simulations for e.g. p = 0.65 and for ener-
gies near the band edge, where the wave functions are strongly localized [10] (see also
the inset of Fig. 2a). Of more interest and controversial is the crossover in weakly loca-
lized or metallic regime. In Euclidean geometries the distribution of g1 in this regime is
Wigner surmise (WS) [9, 11]. In 2D one can approach this distribution for low disorder
as the limit for decreasing L. For fractal geometry of p.c. this is not the case! Here with
L decreasing WS is only an intermediate case observed for L ffi 30 (see Fig. 2a). As L
is further decreased, a long tail which is well fitted by P(l1) � exp (––l1) grows for large
values of l1. We attribute this behavior to the (fractal) structure of p.c. For sizes as
small as L � 10 most configurations have only one blob connected to the rest of the
systems via two SCB’s. It works like a cavity with two one-moded leads. Because of
rough boundaries electron diffusion in such cavity is chaotic. In this case the distribu-
tion of (the only) transmission eigenvalue is known to be w(T1) = 1/(2

ffiffiffiffiffiffi

T1
p

) [12]. In
Fig. 2b the distribution of T1 for p = pc and L = 10 is shown. When (few) configurations
which contain no SCB’s are excluded from 50000 population the agreement with w(T1)
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Fig. 2 (online colour). Distributions of a) variable l1 = arccosh (1/
ffiffiffiffiffiffi

T1
p

) for percolation cluster at
p = pc for various size L = 75 (&), 30 (*), 15 (~), 10 (!), b) eigenvalue T1 for L = 10 for the
whole 50000 population of configurations (!), 39780 configurations which contain SCB’s (+).
Lines in a) are the plots of Wigner surmise: P(l1) = pl1(2hl1i2) exp (––pl1/hl1i)2/4) with hl1i = 5.042
for L = 30 (solid) and exponential decay P(l1) � exp (––l1) (dashed). Line in b) is the plot of
w(T1) = 1/(2

ffiffiffiffiffiffi

T1
p

). Inset: Gaussian fit to the distribution of g1 = l1/l for L = 75



is excellent. This explains the origin of exponential tail in the distribution of l1: In the
limit T1 ! 0 we have T1 ffi 4exp (––2l1) and the form of P(l1) � exp (––l1) stems
directly form w(T1) dT1 = P(l1) dl1. We conclude that exponential tail in the distribution
of l1 is the sign of the fractal geometry of p.c. in the metallic regime. We should expect
such tails if the fractal-to-Euclidean crossover takes place in this region. A certain
example is the case p = 0.7 for which the crossover in Fig. 1a is observed for g ffi 1. In
Fig. 3 the distributions of l1 for this case are shown for various sizes. For L = 50 it is
WS. As the size increases the distributions change towards Gaussian. These two are
consistent with Euclidean behavior as data in Fig. 1a for L > 30 lie on bE-curve. For
L < 30 data in Fig. 1a crossover to fractal geometry. The signs of this are visible also in
P(l1): For small size a tail, which eventually achieves exponential limit, grows up.

Acknowledgement The work was supported by KBN grant No. 8T11B06417.

References
[1] D. Daboul, L. Chang, and A. Aharony, Eur. J. Phys. 16, 303 (2000).
[2] C. M. Soukoulis and G. Grest, Phys. Rev. B 44, 4685 (1991).
[3] Y. Gefen, D. J. Thouless, and Y. Imry, Phys. Rev. B 28, 6677 (1983).
[4] A. Aharony, O. Entin-Wohlman, and A. B. Harris, Physica A 200, 171 (1993).
[5] G. Deutscher, Y. Levy, and B. Souillard, Europhys. Lett. 4, 577 (1987).
[6] D. Stauffer andA.Aharony, Introduction to PercolationTheory, 2nd ed., Taylor andFrancis, 1994.
[7] A. Bunde, H. E. Roman, S. Russ, A. Aharony, and A. B. Harris, Phys. Rev. Lett. 69, 3189 (1992).

A. Bunde, S. Havlin, and H. E. Roman, Phys. Rev. A 42, 6274 (1990).
J. W. Kentelhardt and A. Bunde, Phys. Rev. E 56, 6693 (1997).

[8] A. Kolek, G. Haldas, and A. W. Stadler, phys. stat. sol. 230, 253 (2002).
[9] P. Markoš and B. Kramer, Ann. Phys. (Germany) 2, 339 (1993);

Philos. Mag. B 68, 357 (1993).
[10] A Kolek, G. Haldas, and A. W. Stadler, Acta Phys. Pol. B 32, 467 (2001).
[11] J.-L. Pichard, N. Zanon, Y. Imry, and A. D. Stone, J. Phys. (France) 51, 587 (1990).
[12] H. U. Baranger and P. A. Mello, Phys. Rev. Lett. 73, 142 (1994).
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Fig. 3 (online colour). Distribution of normalized variable l1/hl1i for p = 0.7 and various sizes
L = 10 (&), 20 (*), 50 (~), 160 (!) of p.c. Lines are the plots of WS (solid), Gauss (dotted) and
exponential decay P(l1) � exp (––l1) (dashed)


