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Abstract - The Charging energy model of conduction in granular metals has been inves- 
tigated. In this approach electrical conduction is modelled by a resistor lattice built from 
conductances, Gij.=Goexp(2zso.+Ei/kT). Z is the decay rate of the electron wave function in 
an insulator, k is Boltzmann constant and sij. and E~j are intergrain separation and intergrain 
charging energy respectively. The critical path method used to find the conductivity, or, of the 
model gives the temperature dependence of or- exp[-(Tl/T)l/2 ] in agreement with widely ob- 
served experiments. The temperature, T 1, was expressed in terms of the model's parameters, 
T 1 = 6AzBc/zpk. Here A is the width of the distribution of tunnelling distances, B c is the cons- 
tant of  order 1.5 in three dimension, z is the coordination number of the lattice and p is the 
density of grain charging energies. Numerical simulations of the model has been performed. 
Data have been carefully analysed. The influence of finite size of the model and preexponen- 
tial terms appearing in the formula for cr has been considered. An excellent agreement 
between the critical path analysis and numerical data has been found in the limit AX/p~H. 

~ T R O D U C T I O N  

Granular metals are metal-insulator composites formed from small metallic and insula- 
ting grains of nanometre size. They are usually produced as films grown by co-evaporation or 
co-sputtering. The commonly observed feature of granular metals is a dependence of electrical 
conductivity, a, on temperature, T, 

or- expl-(T l/T)1/2 I. [ II 

To explain the relation [ 1 ] charging energy model of conduction has been recently proposed 
(1,2). In this model nearest neighbour sites i , j  in a regular lattice are connected by conductan- 
ces GfGoexp(2xsij+Eo/kT). Here 2" is decay rate of electron wave function in the insulator, k 
is Boltzmann constant and %. and EO. are intergrain separation and intergrain charging energy 
respectively The latter can be expressed in terms of grain charging energies Ej and E:. Grain 

• . .~ . . 
charging energy E~ is the energy reqmred to place an electron (charge e) on an mmally 
neutral grain. For instance for a separate grain of diameter D i embedded in an insulating host 
of dielectric constant 6 we have ETe21d)~. When only hops of electrons between charged and 
neutral grains (what is a dominant process) are considered E i-(Ei+E.+IEFE4)I2=max(E~,E~) fJ . J J ~/" 
To model randomness of the system sij. and Ej are assumed to be (independent) random varia- 
bles which obey distributions N(%.) and ~(Ej.) respectively. Then N(s) is supposed to be uni- 
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form on lattice spacing, A, N(s)=z/A where z is the coordination number of the lattice. ,o(E) 
has the shape with a flat part near E=0 and quickly goes to 0 when E exceeds its median value 
E o. This type of,o(E) is a result of considerations which take into account both a distribution 
of grain sizes and random electrostatic potential which appears due to the distribution of the 
electrical charge (2). Monte Carlo simulations of this model has been performed on simple 
cubic lattice and show that, indeed, relation [1] can been observed in a limited temperature 
range (2). Analytical solution of the model is also possible. It was shown (3) that equation [1] 
is the characteristic dependence of the model and predictions for temperature T 1 upon the 
model's parameters has been established. The scope of the paper is to check whether theoreti- 
cal and numerical results agree and thus answer the question whether analytical treatment of 
the model was correct. In the next section we shortly review results of analytical analysis of 
the model. 

CRITICAL PATH ANALYSIS 

Critical path analysis bases on the observation that overall conductance of any resistor 
network that is built from conductances, which take values distributed over several orders of 
magnitude, is determined by the so-called critical conductance, G c. The latter is defined in 
such a way that the network's bonds with Gi.<G c form the tiniest subnetwork which percolates 

t j  . . 

through the whole network. Thus for all the bonds m tilts subnetwork we have 

,,j +E,+E:+ E,-Ej[<I, 
Sra 2Em 

[21 

where sin=In(Go~Go)~2;( and E,n=ln(Go/Gc)/kT. Thus s,n and E m have the meanings of maxi- 
mum tunnelling distance and maximum grain energy allowed for bonds and sites which form 
the percolating subnetwork respectively. On the other hand it is well known that to form per- 
colating cluster it is required on average at least B c occupied bonds per lattice site. B c takes 
value which depends only on the dimensionality of the system. For example Bc_~l.5 for all 3D 
lattices. Thus we can find critical conductance of the network calculating the average value of 
occupied bonds (i.e. those that belong to the percolating subnetwork) per lattice site (1) 

Ers E. m rao~$ 0 

dE~p(E~) j dEjp(Ej )  Jds~jN(s,y) 
o o o 

o 

- B~.  [31 

Above maxsij is the maximum distance which satisfies condition 12] for a given set of E i and 
t~.. In the temperature range for which E m lies on the flat part of,o(E)=p near E=0 integrals on 

e left hand side of equation [3] can be calculated. We get zsmEmPl3A=B c which im- 
mediately leads us to the relation Gc~ exp[-(Tl/T) it2] with the temperature 

TI= 6.4 ;(B cIzpk. [4] 
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Thus, if we note that or-  Gc, we show in an analytical way that the charging energy model 
being considered is able to explain experimental relation [1]. In the next section we present 
the results of Monte Carlo simulations which were performed in order to check wether or not 
relation [4] is fulfilled. 

NUMERICAL SIMULATIONS 

To test results [1] and [4] obtained in the previous section computer simulations have been 
carried out. The simulations were performed for the number of the model's parameters AX, 
and p. For each set of those parameters several hundred simple cubic lattices of size L=15 
were generated and their conductances were computed for various temperatures. Then the data 
were averaged (<->) and arranged in log<G> versus T 1/2 plots as it is shown in figure la. As 
it can be seen, in a quite wide temperature range data follow the straight line i.e. relation [1] 
is indeed fulfilled. The temperature T l can be described from the slope of the line. To 
calculate T l only high temperature data should be used. In this temperature range different 
kinds of averaging give nearly the same values of averaged conductance. This means that per- 
colation correlation length, ~:, is shorter than the size of the model. On the contrary, at very 
low temperatures ~ is longer than L and different averaging procedures lead to different values 
of <G>. This obvious observation lets us learn however that more detailed analysis of the 
model should include the influence of ~ on .the conductance of the model. It was shown that 
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Figure 1. a) Results of numerical simulations. Data shown in the figure are for the model in 
which A2,=15, and p=1/41 [meV] -I were used. Filled squares refer to arithmetic averaging 
whereas the empty ones are for harmonic averaging of conductances obtained from several 
hundreds realisations of the model, b) Comparison of the theoretical result of equation [4] 
(solid line) with numerical simulations (squares). Each point refers to temperature T 1 obtained 
from the least square fitting of the data like in figure la with equation [6]. In the fitting proce- 
dure only data for which arithmetic and harmonic averages coincide were used. 
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taking this effect into account results in the preexponential term emerging in equation 111. For 
example in the general problem of the network in which conductances take values G~=exp( - 
~c) where x is the random variable uniformly sampled over 0 and 1 and 2>>1, the percolation 
correlation length scales like ~ and thus the conductivity of the network is given by (4) 

o=¢1Gc~-YGc=2-Yexp(.AXc) ' 151 

where x c denotes value of the percolation threshold, i.e. the percentage of bonds required to 
form percolating cluster. The value of the exponent y is still an object of controversy. Whereas 
most theoretical works show y= v, where v is the percolation correlation length exponent, 
0.89 (5), the most recent numerical simulations give ),=0.6 (4). Our simulations give y=0.76 
(6) and this value will be used in further calculations. 

Let us turn back to the model being analysed. As we have shown in the previous section 
the network's critical conductance is given by Gc--exp[-(TllT)l/21. Thus we can use 2 = 
(T|/7)l/2/xc to determine correlation length in our model. We get ~-T'Y/2, which eventually 
leads us to the conductivity of the model 

o~TY/2exp[(T 1/7) 1/21, 161 

and this is the relation we should fit with the data from numerical simulations. Temperature 
T 1 can be easily determined from the least square analysis of In(<G>T'Y/2) versus T "1/2 data. 
Values of T l calculated in such a way for simulations of the model with various values of A Z, 
and p are shown in figure lb. In this figure the theoretical result of equation I41 is also dis- 
played as the solid line with the slope of 6Bc/Zk. The agreement is excellent in the limit of 
AZ/p~> 1 which is also the condition of the application of the critical path method to solve per- 
colation problems. 
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