
Conductance Distribution in Superlocalization Regime

A. Kolek
1
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The phenomenon of superlocalization has been studied by means of numerical simulations per-
formed on two-dimensional percolation cluster at the threshold site concentration p = pc = 0.593.
It is shown that superlocalization takes place also for the states inside the band. In this case the
averaged logarithm of conductance scales with the size of percolation cluster L as hln gi � �Ldfwith
localization exponent df ffi 1.14. The distribution of ln g arises from the multiplication of two
random variables, namely the chemical length l and inverse localization length g. The distribution
of g is Gaussian with size independent average and variance which scales like var g � hli––1. The
distribution of l has a long tail towards large l. Its average and variance scale like hli � Ldf and
var l � hl2i. There is a small correlation between l and g, which decreases as Ldf=2 as the size of
the percolation cluster increases.

It is well known that in fractal geometry electronic wave functions are superlocalized.
Namely, their mean amplitudes behave like [1, 2]

wðrÞj j � exp ð�r=xrÞdf ; (1)

where r is the distance from the center of the wave function w, xr is the localization
length measured in r-space and df is the localization exponent. This was rigorously
proven for deep states below the band for which the relation df = zl, where zl is the
exponent which describes scaling of the average chemical length (the shortest part) of
the percolation cluster is expected [2]. Namely, hli � Lzl . Less knowledge concerns
the states within the band. Here by the theory only the inequality 1 	 df 	 zl holds
[2, 3] whereas numerical simulations give incompatible results [4]. Our recent finite
size scaling calculations of quantum mechanical conductance show that superlocali-
zation takes place also for the states inside the band [5]. We have found that for 2D
percolation cluster the geometrical average of g � |w|2 scales like in Eq. (1) and ex-
ponent df ffi 1.14 was found for energies E = ––3.5t and 0.5t, where t is the hopping
matrix element (see Fig. 1). In this paper we focus on the distribution of conductance
in the superlocalization regime. As in the previous work [5] our main tool is the use of
numerical simulations. The simulations were performed on 2D percolation cluster at
critical sites concentration p = pc = 0.593 by the finite size scaling technique. The
conductance g was calculated with the help of Landauer-Büttiker formalism and
Green’s function technique for increasing size L of square lattice (see [5] for more
details of the computation technique). The population of the samples was very large
(50000) so the evaluation of conductance distribution was possible (see Fig. 2a).
Unlike for Euclidean geometries the histogram of z 
 –– ln (g/g0)/2 is not Gaussian:
a long tail grows up for small g’s (large z’s).
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The problem of the distribution of wave functions amplitudes on percolation clusters
has been already addressed in a number of papers [6–8]. It was concluded that ampli-
tudes |w| are distributed log-normally in l-space [7]. The long tail observed in L-space
results then from the integration over chemical lengths which (even for constant L) are
broadly distributed according to [9]
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Fig. 1 (online colour). a) Logarithm of conductance g averaged over 50000 configurations of 2D
percolation cluster of size L. Data are for E ¼ ––3.5t (circles) and E ¼ 0.5t (squares). Lines are
the plots of hln gi ¼ ln g0 � 2gLdf with ln g0 ¼ �2:9, g ¼ 0:78, df ¼ 1:144, for E ¼ �3:5t and

ln g0 ¼ 1:15, g ¼ 0:087, df ¼ 1:138, for E ¼ 0:5t. b) Function b 
 @hln gi
@ ln L

versus hln gi for the data
from a). The slope of the line is 1.135
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Fig. 2 (online colour). a) Distribution of log conductance rescaled to z ¼ �ln ðg=g0Þ=2 (bars) in
order to make connection with the distribution fðl j LÞ of chemical length l (line) b) (colour) The
map of joint distribution Pðl; gÞ of chemical length l and inverse localization length
g ¼ 1=xl ¼ z=l. Data in a) and b) are for L ¼ 50



In this approach it was assumed that z = –– ln |w/w0| is the product of two random
variables, z = gl, namely the chemical length l and inverse localization length measured
along the chemical path (the first Lyapunov exponent) g ¼ 1/xl. It was also assumed
that l and g are statistically independent. In this case one has hzi = hgihli and the scal-
ing hln (g/g0)i ¼ �2ðr=xrÞdf was recovered.
In the following we address the problem of correlation between l and g. In case such

correlation exists the distribution of z should be expressed in terms of joint chemical
length, inverse localization length distribution P(l, g)

Pðz j LÞ ¼
Ð

P l; g j Lð Þ 1
l
dl : ð3Þ

A sample map of P(l, g) calculated in our simulations for L = 50 is shown in Fig. 2b2).
One can see that P(l, g) can hardly be written as P(l, g) = f(l | L) N(g | L). It means
that small correlation between l and g exists. The measure of this correlation is a covar-
iance, cov (g, l), of approximately 0.15. When the size L of the percolation cluster
increases this covariance increases rather slowly (see Fig. 3b). This is in contrast to the
variances of l and g, which both show up a strong L dependence. The former increases
like var l � L2df � hli2, in agreement with Eq. (2). The latter decreases as
var g � L�df � hli––1 (see Fig. 3a). This means that the correlation between l and g
decreases as size L of the percolation cluster increases. This conclusion holds at least in
the studied range of L’s. Of great interest are not only variances but also the whole
distributions of l and g. They can be obtained as marginal distributions of P(l, g). In
agreement with statistics of Lyapunov exponents in the localized regime [10] the distri-
bution N(g | L) is Gaussian (see Fig. 4b). Its average almost does not depend on size of
the percolation cluster (see Fig. 3b). This is unlike the distribution f(l | L) for which we
have found that it is well fitted by Eq. (2). The exponents b = 12.4 and d = 8.7, we
have found, differ from those of Refs. [8, 9] due to different geometries considered in
these references and ourselves. They consider the distribution f(l | r) between two
points on the percolation cluster separated by distance r while our distribution is for
two parallel lines (electrodes) (distance L apart) intersecting the percolation cluster.
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Fig. 3 (online colour). a) Variances of l and g as a function of average chemical length hli. Lines
have the slopes of –1 and 2 b) Covariance between l and g and average inverse localization length
hgi as a function of size L. Solid line indicates the value 0.813 of the first Lyapunov exponent as
L! 1



In conclusion we have shown that distribution P(z) of log conductance,
z = ––ln (g/g0)/2, in the superlocalization regime arises from the “convolution” of the
distribution f(l | L) of chemical distance l and the distribution N(g | L) of the first Lya-
punov exponent g = 1/xl. For N(g | L) we have found that it is Gaussian with almost L
independent average hgi and variance which scales like var g = hli––1. There is a small
correlation between l and g that decreases as L increases. In the limit of large L the
variance of ln g arises directly from the variance of l, var (ln g) � L2df . Starting from
this zero-temperature conductance fluctuations we can obtain the behavior at low tem-
peratures by replacing the geometrical size by a “phase coherence length” Lf. In the
superlocalized regime the latter is given by the hopping distance rh � T�1=ðDþdfÞ, where
D is the fractal dimension of the percolation cluster [1–3]. In is now obvious that
fluctuations d ln g 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ln gð Þ

p
diverges as T ! 0 according to

d ln g � T�df=ðDþdfÞ . (4)

Since the average of ln g diverges exactly in the same way [1–3] this result implies
that relative fluctuations of ln g does not vanish as T ! 0. This result should be
contrasted with ordinary Mott VRH, for which d ln g/hln gi was found to vanish as
T1=2ð1þdÞ [11]. Obviously this difference should be observed only in higher dimensions
since for 1D there is no dispersion of chemical length at all.
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Fig. 4 (online colour). a) Test of scaling of the distribution of chemical length l. Symbols refer to
different size L ¼ 30 (squares) 50 (circles) 100 (triangles). Solid line is the plot of Eq. (2).
b) Distribution of inverse localization length g for L ¼ 50



[5] A. Kolek, G. Hałdaś, and A. W. Stadler, Acta Phys. Pol. B 32, 467 (2001).
[6] A. Bunde, H. E. Roman, S. Russ, A. Aharony, and A. B. Harris, Phys. Rev. Lett. 69, 3189

(1992).
[7] A. Bunde, S. Havlin, and H. E. Roman, Phys. Rev. A 42, 6274 (1990);

J. W. Kantelhardt and A. Bunde, Phys. Rev. E 56, 6693 (1997);
J. W. Kantelhardt and A. Bunde, Ann. Phys. (Germany) 7, 400 (1998).
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