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Numerical simulations of shot noise in degenerate disordered conductors in reduced dimension
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Monte Carlo calculations of shot noise powerS in one- and two-dimensional Anderson models of a disor-
dered conductor are presented. For quasi-one-dimensional geometry all theoretical results derived from random
matrix theory are confirmed in ballistic-to-diffusive, metallic, and weak localization regimes. For two dimen-

sions in the weak localization regime the relationS5
1
3 G1dS̃2e2/h with dS̃50.123 74 is found. In the

ballistic-to-metallic and strongly localized regimes both one- and two-dimensional geometries behave in the
same manner.
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I. INTRODUCTION

Shot noise in a conductor is a consequence of cha
quantization. It appears everywhere where the particle
transmitted with probability that is less than 1 but more th
0. This leads to fluctuations of the current around its aver
value^I &. A famous example is the tunnel barrier with sm
but finite transmission probability for which Schottky’s resu
for shot noise holds,1

SI~0![SI52e^I &, ~1!

where SI is the zero-frequency limit of the current nois
power. This result is often referred to in the literature as
Poissonian value of shot noise.

Recently an increasing interest in shot noise in mes
copic conductors has been observed.2 One reason for this is
that its measurements can give complementary informa
about the systems with respect to ordinary conductance m
surements. The mentioned increasing interest refers to
the experimental and theoretical sides of the phenome
On theoretical grounds two main approaches are being u
the classical Langevin and Boltzmann-Langevin meth
and scattering~Landauer! approach to electrical conduc
tance. The latter which is also used in this paper has
advantage of a proper treatment of fully phase-coherent
soscopic conductors. For a two-terminal case and a syste
thermal equilibrium in the zero-temperature limit the co
ductance can be expressed as

G5
2e2

h
Tr~ t1t!5

2e2

h (
n

Tn , ~2!

whereTn are eigenvalues of the transmission matrix squ
t1t. In this basis the nonequilibrium shot noise is given a3

SI5
4e3uVu

h (
n

Tn~12Tn!, ~3!

which only in the limit of small Tn’s reduces to the
Schottky’s results of Eq.~1!. It is obvious from Eqs.~1!–~3!
that shot noise is always suppressed in comparison to
Poissonian limit of Eq.~1!. A useful measure of this suppre
sion is the Fano factorF which is defined as
0163-1829/2001/64~7!/075202~5!/$20.00 64 0752
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n

Tn~12Tn!

(
n

Tn

. ~4!

For disordered conductors in the metallic diffusion regim
the value of the Fano factor was proved to be 1/3.4 This was
confirmed experimentally by Hennyet al.5 The real reason
for 1/3 suppression of shot noise power is that the transm
sion coefficientsTn have a bimodal distribution which apa
from closed channels with eigenvaluesTn!1 contains the
number of open channels withTn;1.6 Such a form of the
distribution is well explained by random matrix theo
~RMT!.7 Although this theory in principle describes on
dimensional~1D! transport, the result of 1/3 suppression
shot noise in the metallic diffusive regime holds also f
higher dimensionalities8 and thus appears as ‘‘superunive
sal.’’ Similar superuniversal behavior is expected in the
calized regime, where both conductance and shot noise
cay exponentially with lengthL. As in tunnel barriers, sho
noise is not suppressed:F51.

It is not clear whether the suppression of shot noise in
weakly localized regime is also superuniversal. For o
dimensional geometry it was shown that quantum interf
ence effects due to disorder lead to corrections in the s
noise powerS[SI /(2eV) and conductance,9,10

S5
2e2

h S N'l

3L
2

1

45D , ~5!

G5
2e2

h S N'l

L
2

1

3D , ~6!

whereN' is the number of transverse channels, andl is the
mean free path due to the disorder. Equations~5! and ~6!
yield theS vs G relation in the weakly localized regime:

S5
1

3
G1

4

45S 2e2

h D . ~7!

Although the theory of weak localization in the transm
sion matrix has been worked out also for two- and thr
dimensional geometries,11 to our knowledge no clear answe
©2001 The American Physical Society02-1
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KOLEK, STADLER, AND HAŁDAŚ PHYSICAL REVIEW B 64 075202
whether Eq.~7! holds also in 2D and 3D has been given
far. Another still open question is the crossover from t
metallic to the localized regime which for shot noise has
been investigated yet. This is contrary to the transition to
ballistic regime, which for one-dimensional geometry w
found to behave as9

F5
1

3 S 12
1

~11L/ l !3D . ~8!

In this paper we address the open questions mentio
above. Our main result is that in two dimensions Eq.~7! also
holds, however with correction terms of 0.123 74 . . . rather
than of 4/45. We have achieved this result by means of
merical simulations and by making use of the microsco
calculations of the distribution of eigenvalues of thet1t ma-
trix developed by Nazarov.11 Our numerical simulations als
show that for shot noise the crossover from the weakly
strongly localized regime can be described in terms of o
one parameter: namely, the conductanceG of the system.

This paper is organized as follows. In the next section
briefly describe the model of a disorder conductor and
method of calculation we have used. In Sec. III we pres
the results of calculations concerning the transition from
ballistic to the diffusive regime. Our results clearly show th
Eq. ~8! correctly describes this crossover not only in qua
one-dimensional geometries but also ford52. The increas-
ing disorder drives the conductor to weak and then to str
localization. The behavior of shot noise in this regime
described in Secs. IV and V. Eventually, Sec. VI contain
brief summary and conclusions.

II. MODEL OF THE DISORDER CONDUCTOR
AND METHOD OF CALCULATION

We consider the Anderson model with diagonal disord
which is commonly used in studies of disorder conductors
is provided by the spinless one-particle periodic tig
binding Hamiltonian

H5(
i

« i u i &^ i u1t(
i , j

u i &^ j u, ~9!

where the summation in the second term runs only over n
est neighbors~NN!. Here« i are the energies at sitesi of the
lattice andt is the hopping matrix element. Disorder is intr
duced by taking the site energies at random and assumi
box probability distribution for them:

p~« i !5H 1

W
for u« i u,W/2,

0 otherwise.

~10!

The distribution given by Eq.~10! was applied to all sites
of rectangular disordered samples of sizew3L ~both in units
of lattice spacinga). Two perfect leads~i.e., with « i50)
were attached to the opposite~left and right! sides of the
sample. They took the shape of semi-infinite wires of wid
w. Hard wall boundaries for both the sample and the le
07520
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were assumed in the remaining direction. For tw
dimensional conductors a square geometry with widthw
5L was taken. To calculate the elements of the transmiss
matrix t we have used the Fisher-Lee relation which expr
them in terms of the Green’s function12,13

@ t#mn5 (
j PL1

(
kPL2

ixn~ ja !Avn@G#k jAvmxm~ka!, ~11!

where xn and xm are transverse components of envelo
functions,vn andvm are longitudinal velocities of incoming
and outgoing waves, respectively, and the sums are ove
sites in the leadsL1 ~left! and L2 ~right! that lie on the
sample-to-lead edge.

The Green’s function elements that appear in Eq.~11!
describe the response at sitesk lying on the right edge of the
conductor due to excitations at sitesj that lie on the left edge.
They were calculated by inverting the matrix

G5@EI2H2SL12SL2#21, ~12!

where SL1 , SL2 are the self-energies due to the leads12

Once the transmission matrixt was evaluated, the eigenva
ues of the matrixt1t were calculated by the standardLAPACK

procedure. All calculations were performed for energy n
the band centerE50.5t.

The calculations were performed for 10 000 configu
tions of the disorder potential of which the results were th
averaged. The quantities being averaged were~i! the sum of
eigenvalueŝ(nTn& or equivalently the conductance^G&, ~ii !
the sum of eigenvalues squared^(nTn

2& which is necessary to
compute the average shot noise power^S&5^(nTn

2&
2^(nTn&, and~iii ! the Fano factor̂F&.

Apart from this real-time averaging all the results we
stored in memory so that calculations of both the cond
tance and shot noise power rms fluctuations

rmsG5A^~G2^G&!2&, rmsS5A^~S2^S&!2& ~13!

were possible after completing every simulation run. T
calculations were performed mostly as a function of latt
size L with other parameters being fixed. Such finite-si
scaling was performed for several degrees of disorder s
ing from weak disorder withW51 up to strong disorder
with W512.

III. BALLISTIC-TO-DIFFUSIVE CROSSOVER

As the degree of disorder is weak a conductor exhib
ballistic behavior. The word ‘‘ballistic’’ reflects the fact tha
in this case the mean free pathl is larger than the size
~length! L of the sample. All transverse modes are transm
ted with probabilityT;1 and this means that shot noise
suppressed@due to the factors (12Tn) in Eq. ~3!#. Alterna-
tively the Fano factor is nearly 0. As either disorder (W) or
the length of the sample increases the conditionl !L holds
no longer. The systems cross over to the metallic reg
where the transport is diffusive and the Fano factor
proaches the valueF51/3. In this region we havel !L. For
one- and two-dimensional geometries, however, to be in
2-2
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NUMERICAL SIMULATIONS OF SHOT NOISE IN . . . PHYSICAL REVIEW B64 075202
metallic regime the size of the system must be much sma
than the localization lengthL!j l . Those two conditions—
i.e., l !L andL!j l—impose very hard requirements on th
system width. Indeed in one dimension we havej l5N'l
which means that a large number of transverse mode
necessary which~as N';w) means that a strip should b
wide enough. It is hard to achieve in numerical simulatio
the width, say,w.100 andL@w, so what one could expec
is a crossover from the ballistic to the weakly localized
gime rather than to a purely diffusive one. This can be ea
observed in Fig. 1 where finite-size scaling calculations
the Fano factor for two one-dimensional strips of differe
widths but the same degree of disorderW51 are shown. For
a wide strip the localization length is larger and the crosso
is from the ballistic to the metallic regime whereF51/3.
This is not the case for a narrow strip for which, sincej l is
much shorter, the crossover is from the ballistic directly
the weak localization regime where Eqs.~5! and ~6! yield

F5
1

3
1

4

45

1

G S 2e2

h D . ~14!

In Fig. 1 also the results for two-dimensional lattice~with
the same value ofW51) are shown. They coincide with
one-dimensional data for a wide strip.

The ballistic-to-diffusive regime crossover was studied
de Jong and Beenakker9 who found Eq.~8!. Our numerical
simulations confirm that this relation indeed describes
crossover very well. This is shown in Fig. 2 where the d
from Fig. 1 are replotted in (123F)21/3 versusL coordi-
nates. In agreement with Eq.~8! they follow a straight line
which intersects they axis at y51. The slope of this line
gives the mean free pathl 536.7. Monte Carlo simulations o
shot noise for the situation of the ballistic-to-diffusive cros
over were performed by Liuet al.14 who also found agree
ment with Eq.~8!. What is new in our results is that data fo
two-dimensionalL3L samples also follow Eq.~8!. This
means that this relation holds also for higher dimension

FIG. 1. Fano factor̂ F& versus the lengthL of weakly disor-
dered conductors. Open symbols are for one-dimensional strip
width w510 ~triangles! or w5100 ~circles!. Solid dots are for
square (w5L) geometry. The horizontal dashed line is at^F&
51/3. The solid line is the plot of Eq.~14!. Each data point is the
average of 1000 configurations. The strength of the disordered
tential wasW51.
07520
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ties. This is not very surprising if we look at Fig. 3 whe
crossover trajectories for two 1D strips and a 2D square
drawn together. The 2D trajectory is composed from d
which lie also on trajectories for 1D strips of various width
The latter obey Eq.~8! so also the 2D trajectory obeys th
equation provided the mean free pathl is only a function of
the degree of disorder and does not depend on the
width.

IV. WEAK LOCALIZATION

In the weakly localized regime the conditionL!j l does
not have to be fulfilled. This makes the simulations eas
Very wide strips are not necessary. In Fig. 4 the results for
site wide strips of different lengths are shown. The region
weak localization where Eq.~7! should hold is clearly evi-
dent. This confirms the validity of the random matrix ana
sis by which this relation has been obtained.9 To our knowl-
edge this is the first numerical study which shows agreem
with Eq. ~7!. In Fig. 5 results for two-dimensions are di
played. Here the data in the weak localization regimeG@1
tend to approach the line

of

o-

FIG. 2. Data from Fig. 1 in different coordinates. The meani
of the symbols is preserved. The solid line is the plot of Eq.~8!,
with l 536.7 ~in units of a).

FIG. 3. Shot noise power̂S& versus conductancêG& ~both in
units of 2e2/h) for W51. Open symbols are for quasi-1D strips
width w510 ~circles! or w530 ~squares!. Solid symbols are for
squareL3L ~2D! geometry. The line is the plot ofS5

1
3 G, which is

the metallic diffusive limit. For the 1D case the flow of trajectori
is from the right to the left~decreasing conductance! with increas-
ing lengthL of the strips. For the 2D case it is just the oppos
~until the diffusive limit is achieved!. Data are averages over 10 00
configurations.
2-3
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S5
1

3
G10.1237S 2e2

h D . ~15!

Below we prove that the difference in the factors for 1
and 2D cases, namely, 4/45 and 0.123 74 . . . , is notacciden-
tal or caused by numerical errors. To show this we emp
the microscopic theory of weak localization corrections
eigenvalues of the matrixt1t.11 The easiest method to trea
analitycally weak localization corrections to shot noise w
this theory is to use relation~16! of Ref. 11 which in our case
of an orthogonal ensemble reads

sinfdF~f!522f(
s

1

s22f2
. ~16!

FIG. 4. Shot noise power̂S& versus conductancêG& ~both in
units of 2e2/h) for a quasi-1D disorder conductor. Symbols are
various degrees of disorderW51 ~circles!, W52 ~triangles!, and
W53 ~squares!. The width of the conductor wasw530 while its
length was increasing fromL5230 up toL5430 (W51), from
L580 up to 370 forW52, and fromL580 up to 380 forW53. In
each caseG ~andS) decreases withL increasing. The solid line is
the plot of Eq. ~7! which is the metallic diffusive limitS5

1
3 G

~dashed line! corrected for weak localization. The dotted line is t
~strong! localization limit S5G.

FIG. 5. Same as Fig. 4 but for two-dimensionalL3L geometry.
The meaning of the symbol is square forW53, circle for W
53.25, up triangle forW53.6, down triangle forW54, diamond
for W54.5, cross (1) for W55, cross (3) for W56, star forW
56.5, and vertical bar (u) for W58. The line is the plot of Eq.~15!.
The sizeL of the square-shaped samples was varied fromL510
~for W>5), 20 ~for W54.5 andW54, andW53.5), 30 ~for W
53.25 andW53), up toL590. ~Data from the ballistic regime for
small W’s are skipped.! Averages were taken over 10 000 config
rations.
07520
y

For three-dimensional cube geometrys25p2( i 5x,y,zni
2 and

ni are integer numbers labeling discrete diffusion modes.x
is the direction of transport, thennx starts from 1, whereas
ny , nz range from 0 to infinity. By virtue of the definition o
the generating functiondF(f) @Eq. ~8! of Ref. 11#, namely,

dF~f!5d TrS t1t

12sin2
f

2
t1tD , ~17!

all the moments of the distribution of transmission eigenv
ues can be expressed via derivatives ofdF(f) at f50. In
particular,

dTr~ t1t!5dF~0!, dTr~ t1t!254
d

df2
dF~f!uf50 .

~18!

From Eq.~17! one can deduce thatS5 1
3 G1dS̃2e2/h with

dS̃58(
s

s24. ~19!

For the 1D case it givesdS̃1D5(8/p4)z(4)5 4
45 whereas for

2D and 3D numerical evaluation of the above sum gives

dS̃2D50.123 74 . . . , dS̃3D50.209 . . . .

The value ofdS̃ in 2D is in excellent agreement with ou
numerical simulations in Fig. 5. To our knowledge this res
is quite new. It is not clear whether the values ofdS̃ we have
obtained in our analysis can be treated as a numerical
proximation of any rational number. To answer this quest
one has to be able to perform analytically the summation
Eq. ~19!. To our knowledge this has not been done so fa

The small difference in a factor by which shot noise e
ceeds the metallic diffusive limitS5 1

3 G is not the only ef-
fect which distinguishes one- and two-dimensional geo
etries. Another one is a~small! difference in rms fluctuations
of shot noise power. This is shown in Fig. 6 where data
d51 and d52 are plotted together. For one-dimension

FIG. 6. rms fluctuations of shot noise power versus aver
conductancê G& for 1D ~open symbols! and 2D ~solid symbols!
geometries. The meaning of the symbols is the same as in Fig.
d51 or in Fig. 5 for d52. The horizontal line is the theoretica

limit derived from RMT: rmsS5A 46
2385.
2-4
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geometry and forG@1 they reach the theoretical limit o
A43/2385.9,16 This limit seems to be slightly higher for tw
dimensions.

V. CROSSOVER TO THE STRONGLY LOCALIZED
REGIME

With increasing disorder~W! the conductor enters th
strongly localized regime. In Figs. 4 and 5 one can obse
the crossover to this regime for^G&,1. A more detailed
view is supplied in Fig. 7 where apart from the data fro
Figs. 4 and 5 replotted in (S2 1

3 G) vs G coordinates new
data series obtained for stronger disorder~up to W512) are
shown. One can observe that both for the one- and t
dimensional cases the data for variousW’s and L ’s follow
the same line, giving rise to the conclusion that in both
mensionalitieŝ G& is the relevant scaling parameter. This
in accordance with the results derived from RMT. In th
approach the increasing wire length leads to the so-ca
crystallization of transmission eigenvaluesln of the transfer
matrix (M ) which are related to transmission eigenvaluesTn
by

Tn5
1

cosh2ln

. ~20!

FIG. 7. Data from Figs. 4 and 5 replotted in (S2
1
3 G) vs G

coordinates. New data series for stronger disorder~up to W512)
are added. Solid and open symbols~upper and lower branches!
illustrate data for 2D and 1D, respectively. Asymptotic lines a
added as for reference; horizontal lines are weak localization lim
for 1D ~dashed! and 2D~dot-dashed! and the solid line is the strong
localization limit.
.

07520
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Namely, in this limit (L@j l5N'l ) the eigenvaluesln
5^ln&1dln with small Gaussian fluctuationsdln around
the averagê ln&5nL/j l , n51,2, . . . . This is contrary to
the diffusive limit L/ l @1 where it was conjectured that th
eigenvaluesln have the uniform density7,15

r~l!5
N'l

L
5

G

2e2/h
, ~21!

with a cutoff atl>L/ l . The transition from a uniform~liq-
uidlike! distributionr(l) of Eq. ~20! to a crystal-like eigen-
value density was shown to be a function of only two para
etersl andL/ l .15 This means that bothG andSare functions
of only one parameter,L/ l , which can be ruled out. TheSvs
G relation is unique as we observe in our Figs. 4 and 7. T
data in Figs. 5 and 7 show that this conclusion is valid a
for the 2D case, which is a less obvious result since RMT
principle works in 1D. The other conclusion is that the tra
sition to strong localization is described by a ‘‘superunive
sal’’ crossover curve which splits into dimension-depend
branches only when approaching a weak localization lim
^G&@1.

VI. CONCLUSIONS

In summary a detailed numerical study of shot no
power in disordered phase-coherent one- and tw
dimensional conductors has been performed. For
quasi-1D case excellent agreement with the results of R
has been found in ballistic, metallic, and insulating regim
For two-dimensional geometry we show that~i! the cross-
over from ballistic to metallic and from weak to strong lo
calization regimes follows the same relation as for the
case and~ii ! in the regime of weak localization the shot noi
powerS exceeds the one-third suppression value by a va
of dS̃50.123 74,S5 1

3 G1dS̃2e2/h.
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