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Numerical simulations of shot noise in degenerate disordered conductors in reduced dimensions
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Monte Carlo calculations of shot noise powgm one- and two-dimensional Anderson models of a disor-
dered conductor are presented. For quasi-one-dimensional geometry all theoretical results derived from random
matrix theory are confirmed in ballistic-to-diffusive, metallic, and weak localization regimes. For two dimen-
sions in the weak localization regime the relati6r 3G+ 652e%/h with §5=0.12374 is found. In the
ballistic-to-metallic and strongly localized regimes both one- and two-dimensional geometries behave in the
same manner.
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I. INTRODUCTION
> Ta(1=Ty)
. . . S| n
Shot noise in a conductor is a consequence of charge F= = (4)
guantization. It appears everywhere where the particle is 2e(l) 2 T
transmitted with probability that is less than 1 but more than wo

0. This leads to fluctuations of the current around its average _ . - .
value(l). A famous example is the tunnel barrier with small ~ For disordered conductors in the metallic dn‘fuspn regime
but finite transmission probability for which Schottky’s result the value of the Fano factor was proved to beIThis was

for shot noise hold$, confirmed experimentally by Henngt al® The real reason
for 1/3 suppression of shot noise power is that the transmis-
S(0)=5,=2¢(l), (1)  sion coefficientsT, have a bimodal distribution which apart

from closed channels with eigenvalug&s<1 contains the

where S| is the Zero-frequency limit of the current noise number of open channels Wifﬁn~1_6 Such a form of the
power. This result is often referred to in the literature as thqj|str|but|on is well exp|ained by random matrix theory
Poissonian value of shot noise. (RMT).” Although this theory in principle describes one-

Recently an increasing interest in shot noise in mesosgimensional(1D) transport, the result of 1/3 suppression of
copic conductors has been obserge@ne reason for this is shot noise in the metallic diffusive regime holds also for
that its measurements can give complementary informationigher dimensionalitiésand thus appears as “superuniver-
about the systems with respect to ordinary conductance megga|.” Similar superuniversal behavior is expected in the lo-
surements. The mentioned increasing interest refers to bo#ylized regime, where both conductance and shot noise de-
the experimental and theoretical sides of the phenomenogay exponentially with length.. As in tunnel barriers, shot
On theoretical grounds two main approaches are being usefgise is not suppresseB:=1.
the classical Langevin and Boltzmann-Langevin methods |t js not clear whether the suppression of shot noise in the
and scattering(Landauey approach to electrical conduc- \eakly localized regime is also superuniversal. For one-
tance. The latter which is also used in this paper has th@imensional geometry it was shown that quantum interfer-

advantage of a proper treatment of fully phase-coherent mesnce effects due to disorder lead to corrections in the shot
soscopic conductors. For a two-terminal case and a system ggjise powelS=S, /(2eV) and conductance!®

thermal equilibrium in the zero-temperature limit the con-

ductance can be expressed as 2¢? (N1 1
, ) “hilar 4—5) ' ©
2e . 2e
G=—-Tr(t"t)=—- ; Th, 2 22 (NI 1
- T(T - 5) ' ©

whereT, are eigenvalues of the transmission matrix square
t*t. In this basis the nonequilibrium shot noise is giveh as whereN, is the number of transverse channels, aiglthe
mean free path due to the disorder. Equati@fsand (6)

4e%|V| ield the Svs G relation in the weakly localized regime:
S=—p— = To(1-To), ® 7 g :
1 4 [2e?
which only in the limit of small T,’s reduces to the =367 5w 0

Schottky’s results of Eq.1). It is obvious from Eqs(1)—(3)

that shot noise is always suppressed in comparison to the Although the theory of weak localization in the transmis-
Poissonian limit of Eq(1). A useful measure of this suppres- sion matrix has been worked out also for two- and three-
sion is the Fano factdf which is defined as dimensional geometri€d to our knowledge no clear answer
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whether Eq.(7) holds also in 2D and 3D has been given sowere assumed in the remaining direction. For two-
far. Another still open question is the crossover from thedimensional conductors a square geometry with width
metallic to the localized regime which for shot noise has not=L was taken. To calculate the elements of the transmission
been investigated yet. This is contrary to the transition to thenatrix t we have used the Fisher-Lee relation which express
ballistic regime, which for one-dimensional geometry wasthem in terms of the Green’s functitit®

found to behave &ds

F= ! 1 ! (8)
3 (1+L/N3)
where x,, and x,, are transverse components of envelope

In this paper we address the open questions mentionefH”CtiO”S'l{n andv, are Iongit_udinal velocities of incoming
above. Our main result is that in two dimensions Egralso ~ nd outgoing waves, respectively, and the sums are over all
holds, however with correction terms of 0.1287. . rather ~ Sites in the leads 1 (left) and L2 (right) that lie on the
than of 4/45. We have achieved this result by means of nuS@mple-to-lead edge. _
merical simulations and by making use of the microscopic, 1he Green's function elements that appear in Eij)
calculations of the distribution of eigenvalues of tie ma- ~ describe the response at sitelying on the right edge of the
trix developed by Nazaro¥ Our numerical simulations also conductor due to excitations at sijethat lie on the left edge.
show that for shot noise the crossover from the weakly tol "€Y Were calculated by inverting the matrix
strongly localized regime can be described in terms of only _ 1
one parameter: namely, the conductacef the system. G=[El-H-21—2,] 7, (12)

This paper is organized as follows. In the next section Weyhere 3, ;, 3,, are the self-energies due to the ledds.
br|eﬂy describe the model of a disorder conductor and th@nce the transmission matrixwas eva'uated’ the eigenva'_
method of calculation we have used. In Sec. Ill we presenbes of the matrix+t were calculated by the standarsPACK
the results of calculations Concerning the transition from th%rocedure_ All calculations were performed for energy near
ballistic to the diffusive regime. Our results clearly show thatine pand centeE=0.5.

Eq. (8) correctly describes this crossover not only in quasi- The calculations were performed for 10000 configura-
one-dimensional geometries but also €+ 2. The increas-  tions of the disorder potential of which the results were then
ing disorder drives the conductor to weak and then to strongyeraged. The quantities being averaged wigrtne sum of
localization. The behavior of shot noise in this regime iseigenvalue$s,T,) or equivalently the conductan¢®), (ii)
described in Secs. IV and V. Eventually, Sec. VI contains ane sum of eigenvalues squareti, T2) which is necessary to
brief summary and conclusions. compute the average shot noise powgd)=(Z,T?)
—(Z,T,), and(iii) the Fano factofF).
Il. MODEL OF THE DISORDER CONDUCTOR Apart from this real-time averaging all the results were
AND METHOD OF CALCULATION stored in memory so that calculations of both the conduc-

We consider the Anderson model with diagonal disorderf@nCc€ and shot noise power rms fluctuations

which is commonly used in studies of disorder conductors. It TSN ek
is provided by the spinless one-particle periodic tight- MmsG=\((G—=(G))%), mMmsS=((S—(9))%) (13

[t]mn=j2u kELZ iXn(ja) Vo[ Gl Vumym(ka), (1)

binding Hamiltonian were possible after completing every simulation run. The
calculations were performed mostly as a function of lattice
H:E si|i)<i|+t2 1)l 9) size L with other parameters being fixed. Such finite-size

i ]

scaling was performed for several degrees of disorder start-

where the summation in the second term runs only over neal-J from weak disorder withV=1 up to strong disorder

est neighborgNN). Heree; are the energies at sitesf the with W=12.
lattice andt is the hopping matrix element. Disorder is intro-
duced by taking the site energies at random and assuming a  !ll: BALLISTIC-TO-DIFFUSIVE CROSSOVER

box probability distribution for them: As the degree of disorder is weak a conductor exhibits

ballistic behavior. The word “ballistic” reflects the fact that

i for |ei|<WI2, in this case the mean free pathis larger than the size
p(ep)=1 W (100 (length L of the sample. All transverse modes are transmit-
0 otherwise. ted with probabilityT~1 and this means that shot noise is

suppressefldue to the factors (2 T,) in Eq. (3)]. Alterna-

The distribution given by Eq.10) was applied to all sites tively the Fano factor is nearly 0. As either disord®V)(or

of rectangular disordered samples of sizg L (both in units  the length of the sample increases the conditigr holds
of lattice spacinga). Two perfect leadgi.e., with £;=0) no longer. The systems cross over to the metallic regime
were attached to the oppositeft and righ sides of the where the transport is diffusive and the Fano factor ap-

sample. They took the shape of semi-infinite wires of widthproaches the value=1/3. In this region we have<L. For
w. Hard wall boundaries for both the sample and the leadsne- and two-dimensional geometries, however, to be in the
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FIG. 1. Fano factoF) versus the length. of weakly disor- FIG. 2. Data from Fig. 1 in different coordinates. The meaning

dered conductors. Open symbols are for one-dimensional strips ¢ff the symbols is preserved. The solid line is the plot of &),

width w=10 (triangles or w=100 (circles. Solid dots are for With [=36.7 (in units ofa).

square (w=L) geometry. The horizontal dashed line is (@)

=1/3. The solid line is the plot of Eq14). Each data point is the ties. This is not very surprising if we look at Fig. 3 where

average of 1000 configurations. The strength of the disordered parossover trajectories for two 1D strips and a 2D square are

tential wasw=1. drawn together. The 2D trajectory is composed from data
which lie also on trajectories for 1D strips of various widths.

metallic regime the size of the system must be much smallefhe latter obey Eq(8) so also the 2D trajectory obeys this

than the localization length<¢, . Those two conditions— €quation provided the mean free patis only a function of

i.e.,|<L andL<&—impose very hard requirements on the the degree of disorder and does not depend on the strip

system width. Indeed in one dimension we hayeN,1  Width.

which means that a large number of transverse modes is

necessary whichias N, ~w) means that a strip should be IV. WEAK LOCALIZATION

wide enough. It is hard to achieve in numerical simulations . ) .

the width, sayw>100 andL>w, so what one could expect [N the weakly localized regime the conditidn<¢, does

is a crossover from the ballistic to the weakly localized re-hot haye to pe fulfilled. This makes th_e simulations easier.

gime rather than to a purely diffusive one. This can be easily/€ry wide strips are not necessary. In Fig. 4 the results for 30

observed in Fig. 1 where finite-size scaling calculations oféite wide strips of different lengths are shown. The region of

the Fano factor for two one-dimensional strips of differentWeak localization where Ed7) should hold is clearly evi-

widths but the same degree of disortfé= 1 are shown. For dgnt. Th|§ conf!rms the validity of the rapdom matrix analy-

a wide strip the localization length is larger and the crossove?!S Py which this relation has been Obta‘_'ﬁéﬁb our knowl-

is from the ballistic to the metallic regime wheFe=1/3. ec_ige this is the f|r_st numerical study whl_ch sh(_)ws agreer_nent

This is not the case for a narrow strip for which, singgs ~ With EQ. (7). In Fig. 5 results for two-dimensions are dis-

much shorter, the crossover is from the ballistic directly toPlayed. Here the data in the weak localization regiére 1

the weak localization regime where E@S) and (6) yield tend to approach the line

41
45G

h

2e2)
(14

Fmly
”3

In Fig. 1 also the results for two-dimensional lattigéth
the same value ofW=1) are shown. They coincide with
one-dimensional data for a wide strip.

The ballistic-to-diffusive regime crossover was studied by 1r °
de Jong and BeenakRewho found Eq.(8). Our numerical , , , , , ,
simulations confirm that this relation indeed describes this o 3 6 95 12 15 18 2
crossover very well. This is shown in Fig. 2 where the data &

; ; ~1/3 ;
from Fig. 1 are replottgd in (33F) versusL poor(_j|- FIG. 3. Shot noise powsg[S) versus conductandges) (both in
nates. In agreement with E() they follow a straight line units of 262/h) for W= 1. Open symbols are for quasi-1D strips of

which intersects thg axis aty=1. The slope of this line \yigth w=10 (circles or w=30 (squares Solid symbols are for
gives the mean free path-36.7. Monte Carlo simulations of gqyare x L (2D) geometry. The line is the plot &= 3G, which is

shot noise for the situation of thel4balIistic-to-diffusive Cross-the metallic diffusive limit. For the 1D case the flow of trajectories
over were performed by Liet al.” who also found agree- s from the right to the leftdecreasing conductariceith increas-
ment with Eq.(8). What is new in our results is that data for ing lengthL of the strips. For the 2D case it is just the opposite

two-dimensionalL XL samples also follow Eq(8). This  (until the diffusive limit is achieved Data are averages over 10 000
means that this relation holds also for higher dimensionaliconfigurations.

%

(8] w - w (=2} ~
T T T T T
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FIG. 4. Shot noise powe(S) versus conductana@) (both in FIG. 6. rms fluctuations of shot noise power versus average

units of 262/h) for a quasi-1D disorder conductor. Symbols are for conductancgG) for 1D (open symbolsand 2D (solid symbols
various degrees of disord&¥=1 (circles, W=2 (triangles, and ~ 9eometries. The meaning of the symbols is the same as in Fig. 4 for
W=3 (squares The width of the conductor was=30 while its ~d=1 or in Fig. 5 ford=2. The horizontal line is the theoretical
length was increasing frorh =230 up toL=430 (W=1), from limit derived from RMT: rmsS= / 335.

L =80 up to 370 foWW=2, and fromL =80 up to 380 folWW=3. In

each casé& (and S) decreases with increasing. The solid line is  For three-dimensional cube geomeﬁ"y: 7722i=x,y,zni2 and

the plot of Eq.(7) which is the metallic diffusive limitS=3G  n, are integer numbers labeling discrete diffusion modes. If
(dashed Iinbe_corr.ectgd for weak localization. The dotted line is the j5 the direction of transport, them, starts from 1, whereas
(strong localization limit S=G. ny, n, range from O to infinity. By virtue of the definition of
the generating functiodF (¢) [Eqg. (8) of Ref. 11], namely,

S= 1G 0.123 2¢° 15
~3610128 ). 5 th
OF(p)=6Tr| ————— |, 17)
Below we prove that the difference in the factors for 1D 1—sirP —t*t
and 2D cases, namely, 4/45 and 0.123 7., is notacciden- 2

tal or _Caused by numerical errors. TO.ShQW this we _employa” the moments of the distribution of transmission eigenval-
the microscopic theory of weak localization corrections to

eigenvalues of the matrit't.1* The easiest method to treat = c2" be expressed via derivatives’s(4) at $=0. In

analitycally weak localization corrections to shot noise with particular,
this theory is to use relatiof16) of Ref. 11 which in our case d
of an orthogonal ensemble reads STr(t*t)=8F(0), 5Tr(t+t)2=4—2 5|:(¢)|¢=0_
d¢
. 1 (18
singoF(¢)= 24> 5. (16) B .
s "¢ From Eq.(17) one can deduce th&= G+ 6S2e?/h with
55=8>, s74. (19)
S
For the 1D case it givesS, y=(8/7%){(4)= + whereas for
2D and 3D numerical evaluation of the above sum gives
85,0=0.123% ..., 65p=0.20....
. . . . . The value ofsS in 2D is in excellent agreement with our
0.0 0.5 1.0 L5 20 25 numerical simulations in Fig. 5. To our knowledge this result
G is quite new. It is not clear whether the valuess&we have

obtained in our analysis can be treated as a numerical ap-
The meaning of the symbol is square fov=3, circle for W proximation of any rational number. T_o answer this que_stio_n
=3.25, up triangle foW=3.6, down triangle folW=4, diamond ~ °N€ has to be able to perform analytically the summation in
for W=4.5, cross ) for W=5, cross () for W=86, star forw Eq. (19. To our knowled.ge this has not bpen done S0 far.
=6.5, and vertical bar|} for W=8. The line is the plot of E¢(15). The small difference in a factor by which shot noise ex-
The sizeL of the square-shaped samples was varied ftom10  Cceeds the metallic diffusive limi=3G is not the only ef-

(for W=5), 20 (for W=4.5 andW=4, andW=3.5), 30(for w  fect which distinguishes one- and two-dimensional geom-
=3.25 andW=3), up toL =90. (Data from the ballistic regime for ~ €tries. Another one is @mall difference in rms fluctuations
small W's are skipped.Averages were taken over 10 000 configu- Of shot noise power. This is shown in Fig. 6 where data for
rations. d=1 andd=2 are plotted together. For one-dimensional

FIG. 5. Same as Fig. 4 but for two-dimensiohaf L geometry.
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0.14 T - - - Namely, in this limit L>¢=N,1) the eigenvalues\,
0.12 ] =(N\n)+ S\, with small Gaussian fluctuationg\,, around
o10l / JErS dypan,, S8 W, 2D the averagg\,)=nL/§, n=1,2,....This is contrary to
. 2 the diffusive limitL/I>1 where it was conjectured that the
T WP “°“°°°éi>l°)°3°°°°°°°' eigenvalues\,, have the uniform densify®
~ 0.061 i .
|
% ol ()= (21)
0.02 =—= ,
X o PYTTT 2e7n
*%0 0.5 1.0 1.5 2.0 2.5
(G) with a cutoff atA=L/Il. The transition from a unifornilig-

uidlike) distributionp(\) of Eq. (20) to a crystal-like eigen-

value density was shown to be a function of only two param-
15 . .

are added. Solid and open symbgisper and lower branches etersh andL/I.*> This means that bot® andSare functions

illustrate data for 2D and 1D, respectively. Asymptotic lines areOf only one parameteL,/I, which can be ruled out. Thevs

added as for reference; horizontal lines are weak localization Iimit@ rele_ltior_l is unique as we observe_ in our Figs' 4 and_7. The
for 1D (dashegland 2D(dot-dashefland the solid line is the strong data in Figs. 5 and _7 ShOW that th's_ conclusion ,'S valid als_o
localization limit. for the 2D case, which is a less obvious result since RMT in

principle works in 1D. The other conclusion is that the tran-
geometry and foiG>1 they reach the theoretical limit of Sition to strong localization is described by a “superuniver-
43/2385%16 This limit seems to be slightly higher for two sal” crossover curve which splits into dimension-dependent

FIG. 7. Data from Figs. 4 and 5 replotted i€ 3G) vs G
coordinates. New data series for stronger disofderto W= 12)

dimensions. branches only when approaching a weak localization limit,
(G)>1.
V. CROSSOVER TO THE STRONGLY LOCALIZED
REGIME VI. CONCLUSIONS

strongly localized regime. In Figs. 4 and 5 one can observ@ower in disordered phase-coherent one- and two-
the crossover to this regime f¢iG)<1. A more detailed gimensional conductors has been performed. For the
view is supplied in Fig. 7 where apart from the data fromqyasi-1D case excellent agreement with the results of RMT
Figs. 4 and 5 replotted ing—3G) vs G coordinates new has been found in ballistic, metallic, and insulating regimes.
data series obtained for stronger disortigy toW=12) are  For two-dimensional geometry we show tHat the cross-
shown. One can observe that both for the one- and twogyer from ballistic to metallic and from weak to strong lo-
dimensional cases the data for varidts andL’s follow  calization regimes follows the same relation as for the 1D
the same line, giving rise to the conclusion that in both di-case andii) in the regime of weak localization the shot noise

mensionalitieg G) is the relevant scaling parameter. This is power S exceeds the one-third suppression value by a value
in accordance with the results derived from RMT. In thisgf §5=0.12374,5= LG+ 652e%/h.

approach the increasing wire length leads to the so-calle
crystallization of transmission eigenvalues of the transfer

matrix (M) which are related to transmission eigenvalligs ACKNOWLEDGMENTS
b . . .
y This work was supported by the Polish State Committee
1 for Scientific ResearcliKBN) through Grant No. 8-T11B-
n= ) (20)  05515. The authors express their thanks to T. Dietl for en-
costf\, couraging them to do this work.
1w. Schottky, Ann. Phys(Leipzig) 57, 541 (1918. 9M.J.M. de Jong and C.W.J. Beenakker, Phys. Re¥6B13 400
2Ya.M. Blanter and M. Bttiker, Phys. Rep336, 1 (2000. (1992.
3M. Biittiker, Phys. Rev. Lett65, 2901(1990. 1p A, Mello, Phys. Rev. Lett60, 1089(1994).

4C.W.J. Beenakker and M. Biker, Phys. Rev. B16, 1889(1992. Iyu.V. Nazarov, Phys. Rev. B2, 4720(1995.
SM. Henny, S. Oberholzer, C. Strunk, and C. Suéoberger, Phys. 12S. DattaElectronic Transport in Mesoscopic Systef@ambridge

Rev. B59, 2871(1999. University Press, Cambridge, England, 1295

60.N. Dorokhov, Solid State CommuB1, 381 (1984). 13p.s. Fisher and P.A. Lee, Phys. Rev2B, 6851(1981).

"A.D. Stone, P.A. Mello, K.A. Muttalib, and J.-L. Pichard, ide-  '*R.C. Liu, P. Eastman, and Y. Yamamoto, Solid State Commun.
soscopic Phenomena in Solidsdited by B.L. Altshuler, P.A. 102 785(1997.
Lee, and R.A. WeblfNorth-Holland, Amsterdam, 1991p. 369. 15C.W.J. Beenakker, Rev. Mod. Phy&9, 731(1997.

8Yu.V. Nazarov, Phys. Rev. Let?.3, 134 (1994. 16A.M.S. Macalo, Phys. Rev. Lett79, 5098(1997).

075202-5



