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ABSTRACT 

In the work a numerical method of dissolving the Poisson equation in an electrostatically 
formed Quantum Point Contact (QPC) is described. Such a device is based on the structure 
called ISIS (Inverted Semiconductor Insulator Semiconductor). This structure was proposed in 
1991 by Kastner [1] who made single electron transistor in it. In this paper the Poisson 
equation is solved by means of boundary elements method [2] with functions of the single 
layer potential [3] whose result provides potential distributions of the QPC device. The 
electronic properties of the QPC model are found by the use of Green functions method [4]. 
The interaction between structure and two leads is described by self-energy method [5]. The 
QPC conductance is calculated with the help of Landauer formula, after the Green’s function 
corresponding to device Hamiltonian is evaluated. 

1. Introduction 

In the paper we present the simulation method of 
quantum point contact (QPC) based on the inverted 
semiconductor insulator semiconductor (ISIS) 
structure. This device was introduced in 1991 by 
Kastner [1] et al. We start our analysis using the same 
type of the structure. In order to create the model of 
quantum point contact (Fig. 1) we deposit suitably 
formed metal electrodes on the surface. A suitable 
biasing of electrodes forms two-dimensional electron 
gas (2DEG) on the interface between top layer i-GaAs 
and the i-AlGasAs layer. Its density is controlled by 
the gate voltage applied to the lower (G) electrode 
deposited on conductive substrate. A negative voltage 
applied to the upper electrodes (E) depletes 2DEG 
underneath them. The electrostatic potential takes the 
form of saddle in the region where the gas is 
constricted.  

When the voltage applied to (E) electrodes is 
decreased, the potential constriction and open 
channels are reduced. The conductance of such 
device is proportional to the number of open channels 
therefore we observe plateaus equaled n×2e2/h, 
where n is number open channels. 

2. Numerical model and simulation method 

The model of examination of the quantum point 
contact is shown in Fig. 1. The model consists of five 
regions with fixed potentials corresponding to 

metallic electrodes: lower gate (G), source (S), drain 
(D) and suitably formed metal electrodes (E) on the 
surface. The process of simulations consists of two 
steps. 

 

2.1. Calculation of potential distribution in QPC 

The first step relies on solution of Poisson 
equation:  

ε
ρϕ −=Δ ,                               (1) 

where ρ is volume density of electric charge (in the 
considered case it is an unbalanced charge in the 
2DEG area) with boundary conditions described by 

Fig. 1. Model of quantum point contact. 
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a potential fixed on the electrode and the 2DEG area. 
The conditions of continuity of potential and normal 
component of the vector of electric displacement 
field on surface which differentiates area I and II are 
as fallows: 
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where Sk is the surface of the k-th electrode; indices 
1, 2 are concerned with the potentials in areas I and 
II, respectively, and Vk denotes potential of k-th 
electrode. Because ρ is unknown, the solution of our 
task has to lead to necessary self-consistency ρ and ϕ  
fields. 

In the first step ρ = 0 is accepted therefore 
Laplace equation is solved for the above-mentioned 
boundary conditions. 

The function ϕ has to be found in form of the 
single layer potential: 
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where σS is the potential density of the single layer on 
a Si surface which is the boundary of the i-th area. In 
this equation r is the distance of point pi of this area 
to any other any point on the boundary. 

Substituting Eq. (3) to the boundary conditions, 
the matrix of integral equations is found, with 
unknown σS. Once a set of integral equations is 
solved, a desired function of the potential is obtained 
according to Eq. (3).  

To solve the problem, which was mentioned 
above, the Boundary Elements Method is used. On 
the electrodes as well as on the surfaces P1, P2 
a rectangular mesh, with the elements of different 
sizes is defined. This makes the compromise between 
the accuracy of the calculations and size of numerical 
model, limited by a memory size of the computer. 

The functions of potential densities, are approx- 
imated by the elements of a discretization mesh and 
by staircase functions, therefore expression (3) has 
the following form:  
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where Sin denotes the area of the n-th element of the 
discretization mesh on surface of the boundary of the 
area Si.  

After the substitution of Eq. (4) to boundary 
conditions (2) the system of algebraic Eqs. (5) of a σS 
variables is obtained. Integrals in Eq. (4) are 
calculated analytically. In the system of Eqs. (5) N1 
and N2 are the numbers of the discretization elements 

on the boundary of 1 and 2 areas, respectively (see 
Fig. 1), 
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N3 is the number of the discretization elements on P1 
and P2 surfaces (see inset Fig. 1), mSi

V , is the fixed 
potential on a surface of the m-th element on the 
boundary of the i-th area and V2DEG is the induced 
potential from the 2DEG area (in first iteration 
V2DEG=0). One unknown variable in (5) is σS. The 
matrix of coefficients of the set of Eqs. (5) is solved 
by means of the Gauss elimination method. 

The next step of calculations relies on matching 
a charge in the 2DEG and the electrodes. 

2.1.2. Two-dimensional electron gas 

The value of the charge in quantum point contact 
and the 2DEG area is calculated on the basis of the 
formula which defines a concentration of the two-
dimensional electron gas [6]: 
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where f is the function of Fermi-Dirac distribution, 
EF is Fermi energy of the 2DEG, EC is energy of the 
bottom edge of the conductivity subband, m is an 
effective mass of electron. The formula (6) is valid in 
the case of sufficiently large quantum point contacts, 
i.e. the ones that include statistically significant 
number of electrons [6]. 

In order to calculate parameters of the 2DEG we 
analyzed the conduction band in region of hetero- 
juncion in our model of device. For positive UGS, 
triangular well is created in GaAs layer what is 
shown in Fig. 2.  

According to Fig. 2 we can write: 

FW EEE += 1 ,                              (7) 

where EW is energy difference between Fermi energy 

Fig. 2. The part of the conduction band EC(z) in the region of
heterojunction AlGaAs-GaAs for UGS>0. 
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(μn) upper (E) electrode and energy of bottom of the 
well, E1 is the lowest energy level. In order to solve 
the lowest energy level we use the triangular well 
approximation [6]:  
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where c1 ≈ 2.338. If the depth of the well is known, 
expressions (6), (7) and (8) may be transformed to 
obtain non-linear equation with only one unknown 
variable. We use it to find the Fermi energy (EF) of 
the 2DEG. Then the concentration of the 2DEG from 
Eq. (6) can be calculated. 

Now the charge of the 2DEG can be computed. 
Substituting it to Eq. (1) and Eq. (3) to boundary 
conditions (2) we solve the set of Eqs. (5) including 
the induced potential from the 2DEG. The procedure 
is repeated until the electron density in electrodes and 
the 2DEG stops changing. Now it is possible to count 
the potential in any point P lying inside studied 
device in accordance to Eq. (4). 

The study of potential energy distribution is 
concentrated close to AlGaAs-GaAs junction where 
the 2DEG is formed. At the end of the first step of 
calculation we obtain self-consistently of the po- 
tential energy distribution in the 2DEG area. 

2.2. Conductance of QPC 

The second step relies on the calculation of the 
conductance. In this step we take into account only 
the 2DEG area. Therefore the computations reduce to 
two-dimensional case. It is also assumed that QPC 
conductance is calculated for UDS→0 (source-drain 
voltage), and the temperature is close to 0K. Then the 
conductance g between contacts 1 (drain) and 2 
(source) is given by summing up the transmission 
probabilities Tmn between each pair of modes, namely 
mode m in lead 2 and mode n in lead 1  

∑ ∑
∈ ∈

=
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22
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h
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This is well-known Landauer formula [7]. The 
transmission probabilities Tmn are directly connected 
to the elements of S-matrix, relating the electron 
wave function amplitudes in different leads: 
Tmn = |smn|2vm/vn, where vm, vn are velocities in modes 
m and n, respectively. One way of calculating the 
S-matrix elements is to employ the Fisher-Lee 
relation which express Tmn in terms of the Green’s 
function [8]. 

2.2.1. Green’s function 

The Green’s function describes the response at 
any point r due to the excitation at point r’. In 
general, when the response is related to the excitation 

by a differential operator H the Green’s function 
G(r, r’, E) can be defined as the solutions of 
inhomogeneous differential equation [4]  

)r'rr'r −=− (),,()( δzGHz ,            (10) 

where z is complex variable with E = Re{z} and 
η = Im{z}. When H is linear, time-independent 
Hermitian deferential operator which possesses the 
set of ortonormal eigenfunctions {φn(r)} correspond- 
ing to eigenvalues En: 

)()( rr nnn EH φφ = ,                       (11) 
one can express G(r, r’, z) as eigenfunction 
expansion 
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where ∫dn is the integral over continuous spectrum 
(band) of H. The above equation shows that G has the 
poles at the positions of discrete eigenvalues En of the 
Hamiltonian. Since H is Hermitian its eigenvalues are 
real and thus the poles of G lie only on the real axis 
in complex z-plane. The residue at a pole En equals to 
Σk )()( * rr kk φφ where the summation is over all 
degenerate eigenstates with eigenenergy En. The 
situation is quite different for energies belonging to 
the continuous spectrum of H consisting of extended 
states. In this case the Green’s function is not well 
defined since the integrand in Eq. (4) has a pole. For 
such energies the retarded Green’s function is defined 
by a limiting procedure  
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0
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2.2.2. Tight Binding Hamiltonian 

One of the most widely used models of electron 
device on the quantum mechanical level is the Tight 
Binding Hamiltonian (TBH). In this model the wave 
function is expressed in terms of localized atomic-
like orbital (states), one at each atomic site. Usually it 
is assumed that only orbital on nearest neighboring 
(n.n.) sites overlap. The measure of this overlapping 
is the transfer integral t. If we assume that local 
potential influences the eigenenergy εi of electron 
located at site i then TBH in a braket notation has the 
form  

∑∑ −=
ji

ij
i

i jtiiiH
.

ε                        (14) 

where i  is the orbital centered at site i and the 
second sum runs only over n.n. The convenient way 
is to write H in a matrix representation: 

otherwise.    0]H[
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In this case the differential equation of Eq.(10) 
becomes a matrix equation 
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]I[]G])[H[]I[( =−z ,                           (16) 

where [I] is the identity matrix and the Green’s 
function becomes a matrix with elements 

),',()(]G[]G[ zGzijij rr==                 (17) 

which describes response at site i due to excitation in 
site j. Eq. (15) provides another way to calculate the 
Green’s function  

1])H[]I[(]G[ −−= z .                        (18) 

The only problem is that the matrix is infinite 
dimensional. This is because of the leads, which 
should be considered as stretching out to infinity. 
Otherwise we would deal with closed system with no 
transport at all. The solution of this “infinite 
dimensional” problem is proposed in the book of 
Datta [5]. 

2.2.3. Self-energy 

One obtains the formula for the Green’s function 
of a device in which the interaction with the leads is 
taken into account: 

( ) 1][][][[][ −Σ−Σ−−= L2DL1DDHI]G z ,   (19) 

where [HD] is Hamiltonian matrix which describes 
the isolated device. The terms [ΣL1D] and [ΣL2D] that 
appear in Eq. (19) describe the interactions between 
the device and the lead 1, and the lead 2, respectively. 
They are called the self-energies (due to the leads). 
The self-energy matrix elements can be obtained 
from the equation [5], [9], [10]: 
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where Em is energy m-th mode, χm is the transverse 
components of the wave functions in the lead, t is the 
hopping element (t ≡ h2/2m*a2, a – constant lattice, 
m* is effective mass) and q = coskma = (E − Em)/2t. 

3. Results 

In this section we present the results of simulation 
for two kinds of the QPC. The device structure 
parameters are schematically shown in Fig. 3.  

The parameters can be sorted into three groups. 
The first group (Fig. 3a) defines longitudinal and 
vertical size of structure, drain, source and the upper 
(E) electrodes. The second group (Fig. 3b) 
characterizes dielectric layer parameter, and thickness 
of the semiconductor layers and electrodes. Third 
group is described by voltage parameters.  

The voltages biasing the structure are marked in 
Fig. 1. 

The values of basic parameters used in the 
simulation for the first sample of the QPC (QPC 1) 
are placed in Table 1, and for second sample (QPC 2) 
in Table 2. The value of biasing voltage UGS is 
responsible for creating the 2DEG. In order to 
compare the models, this voltage is chosen so as to 
the concentration of gas near drain and source area 
has the same value. The concentration of the 2DEG 
approximates 2.5⋅1015 m−2 for the biasing voltages 
equaled to 0.7 V and 0.4 V for the QPC 1 and the 
QPC 2, respectively. 

 

Table 1. The values of the basic parameters of the 
simulations for the QPC 1 

Sizes of the structure Biasing voltages 
 [nm]  [nm]  [V] 

L 600 H 620 UGS 0.7 
W 400 hE 20 UES −2.50÷−2.15 
lE 480 hS 50 UDS 0 
lS 100 hGaAs 100 Dielectric permittivity 
wS 20 hAlGaAs 200 ε1 12.8 

  hn 300 ε2 13.2 
 

Table 2. The values of the basic parameters of the 
simulations for the QPC 2 

Sizes of the structure Biasing voltages 
 [nm]  [nm]  [V] 

L 700 H 520 UGS 0.4 
W 400 hE 50 UES −1.8÷−1.64 
lE 300 hS 50 UDS 0 
lS 100 hGaAs 70 Dielectric permittivity 
wS 50 hAlGaAs 100 ε1 12.8 

   hn 300 ε2 13.2 

Fig. 3. The parameterization of the QPC model: a) view from
the top of the structure, b) cross-section of the structure. 
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As it was mentioned earlier, the calculation 
concentrated around AlGaAs interface. An example 
of the potential energy distribution in this area is 
shown in Fig. 4.  

The potential energy distribution was calculated 
for biasing voltages: UGS  = 0.7 V, UES  = −2.34 V and 
UDS = 0 V for the model (QPC 1), whose simulation 
parameters are shown in Table 1. In Fig. 4 we see 
that the distribution of the potential energy looks like 
the saddle.  

The energy V(x,0) varies with longitudinal 
position x through the constriction, rising to a broad 
peak in the middle. The peak energy in the con- 
striction under the Fermi energy (in Fig. 5, EF = 0) 
depends on biasing voltage in upper (E) electrodes 
(UES). If biasing voltage UES increases the 
constriction grows as well. This effect is shown in 
Fig. 5.  

In Fig. 6 cross-sections of the potential energy 
distribution through the centre of the model along to 
transport direction for various voltages UES is 
presented.  

In this case, if the biasing voltage UES is 
increased, the potential barrier is reduced. It enables 
the charge transport between source and drain. The 
electrons are forced to travel through the gap of 

constriction and behave like quasi-one-dimensional 
system. 

In this system we observe the quantized 
conductance. 

Figure 7 shows this effect for two models of the 
QPC in which staircases of conductance g versus the 
upper gate voltage UES are presented. UES is 
calculated from a sample-dependent threshold UT. 
The threshold voltage depends on a geometry of the 
QPC. In our case it is equaled −2.48 V and −1.758 V 
for QPC 1 and QPC 2, respectively. 

For biasing voltages UES > UT we observe 
„staircase” increasing of the conductance and the 
conductance quant is equaled to 2e2/h, what is true 
according to the theory and experimental results [11], 
[12]. It is worth to notice that range of changes of 
conductance is lower for the QPC 2 then for the 
QPC 1.  

The nature of changes of conductance depends on 
parameters of electrostatically formed potential. The 
transition of conductance from one plateau to next 
one is associated with the width of potential barrier in 
transport (x) direction. Figure 8 depicts that the 
barrier for the QPC 2 is wider then the QPC 1. The 
wider the barrier the more difficult tunneling 
throughout the barrier is observed. Only these 

Fig. 4. The distribution of potential energy for QPC 1 in the
2DEG area calculated for UGS = 0.7 V, UES = −2.34 V and
UDS = 0 V. 
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channels are on whose energy is greater or almost 
equal to the maximum energy of potential in the 
middle of constriction. For lesser barrier width (see 

Fig. 8) the increase of conductance is slow therefore 
the tunneling of electrons throughout the barrier is 
easier. Instead, the width of plateaus of conductance 
depends on steepness of the potential in 
perpendicular direction to the transport.  

The greater the steepness the longer the plateau. 
Let us see, that the potential energy (Fig. 9) increases 
quicker for the QPC 2 then for the QPC 1, therefore 
a better visibility of the plateau in the characteristic is 
observed for QPC 2.  

4. Conclusions 

The main goal of our work was to simulate and 
test numerical model of quantum point contact 
created using ISIS structure. On the basis of obtained 

 
 
 
 

results shown in Fig. 7 one is allowed to conclude 
that this goal was reached. Calculated conductance of 
proposed model is step-like what is a tipical feature 
of quantum point contact. An open subject is to 
discuss the quantitative changes of the range of 
switching the quantum mechanical modes on. It turns 
out that in case of presented model this range is 
smaller than when the quantum contact models are 
concerned (here the models are based on the 
modulation doped structure [13]). It may stem from 
a different intensity of electric field distribution 
inside a device. 
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Fig. 9. The comparison of cross-sections of the potential
energy distribution through the centre of the model
perpendicular to transport direction calculated for (QPC 1)
UGS = 0.7 V, UES = −2.348 V and for (QPC 2) UGS = 0.4 V,
UES = −1.708 V. 
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