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Excess 1/ f noise in systems with an exponentially wide
spectrum of resistances and dual universality
of the percolation-like noise exponent

A. A. Snarski a)

Ukrainian National Technical University—‘‘KPI,’’ 252056 Kiev, Ukraine

A. Kolek
Politechnika Rzeszowska, 35-959 Rzeszow, Poland

~Submitted 30 June 1995; resubmitted 14 March 1996!
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The excess 1/f noise in a random lattice with bond resistances
r;exp(2lx), wherex is a random variable andl@1, is studied theo-
retically. It is shown that if the correlation function$dr 2%;r u12, then
the relative spectral density of the noise in the system is expressed as
Ce;lm exp(2l(12pc)), where pc is the percolation threshold and
m5nd (n is the critical exponent of the correlation length andd is the
dimensionality of the problem!. It is hypothesized that the exponent
m possesses a dual universality: It is independent of 1! the geometry of
the lattice and 2! theu-mechanism responsible for the generation of the
local noise. Numerical modeling in a three-dimensional lattice gives
m52.3 foru51 andu50, in agreement with the hypothesis. ©1996
American Institute of Physics.@S0021-3640~96!01008-0#

A large number of problems reduce to the calculation of the effective properties
systems with an exponentially wide spectrum of resistances~ESR!. For example, in the
investigation of high-temperature hopping conductivity in weakly doped semiconducto
it is necessary to determine the effective electrical conductivityse of a random network
with an exponentially wide spectrum of resistances — the so-called Miller–Abraham
network.1 The resistance of thei th bond in this network can be chosen in the form

r i5r 0 exp~2lx!, xP@0,1#, l@1, ~1!

wherex is a random variable with a smooth distributionD(x) which is the same for all
bonds.

As was shown in Refs. 1–4, there exists a method that reduces the problem
determiningse for the Miller–Abrahams network to a percolation problem. Neglecting
the pre-exponential factor, this method leads tose5s0exp(lxc), wherexc is determined
in terms of the percolation threshold of the standard two–phase problem on the sa
network
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wherep is a nominal concentration of the good-conductor phase. More detailed inves
gations of the dependence ofse on l ~Refs. 1 and 5–12! made it possible to find the
percolation-like exponenty determining the behavior of the pre-exponential factor:

se5s0l
2y exp~lxc!. ~2!

According to these investigations, the exponenty can be expressed in terms of the critical
exponent 2n, well known in the percolation theory, of the correlation length
y5n(d22), whered is the dimension of the problem.

In Refs. 13 and 14 it was shown that to describe consistently the percolation-li
behavior of the effective quantities, specificallyse in systems with ESR, it must be
assumed that the system is in the so-called smearing region15 ~analog of the region of
broadening of a phase transition in the theory of second-order phase transitions!. In
calculating the effective quantities it is necessary to use some model of the percolat
structure in the smearing region. Such a model, which is an extension of models of
Nodes–Lins–Blobs type5,6,11–16to the smearing region, was proposed in Ref. 17~see Fig.
1!. In Ref. 18 this model was used in systems with ESR. According to this model, th
percolation structure of a system with ESR consists of a bridge with resistan
R1;^r &1N1 , interlayers with resistanceR2;1/(^1/r &2N2), and a resistancerm . Here
^r &1 is the average resistance in the bridge, the average being taken over the interva
the random variablexP(x1,1), and ^1/r &2 is the average in the interlayer~where in
contrast to the bridge the resistances are connected in parallel! taken over the interval
xP(0,x2). The values of xi are related with the size of the smearing region
D2x15xc1(12xc)D andx25xc2(12xc)D.

14 In the smearing region the number of
resistances in a bridge and an interlayer also depends onD: Ni;D2a i, wherea i are
critical exponents which have different numerical values in different models. In two
phase percolation systems the choicesa15t2n(d22) anda25q1n(d22),19 where
t andq are the critical exponents of the conductivity above and below the percolatio
threshold, gives good agreement between the experimental and numerical data. In Re
it was shown that for systems with ESR the choicea15a251, as done for two-phase
systems in Refs. 5, 16, and 20–23, gives better agreement. For this reason, in w
follows these values ofa i will be adopted everywhere and both values ofa i will be
presented only in the table. The resistancerm5rm(x) assumes with equal probability any
value in the intervalxP(x2 , x1), corresponding to the smearing region in a two-phase
system.

FIG. 1. Model of a percolation structure in the smearing region.R1—resistance of ‘‘simply connected bonds’’
of the good-conductor phase;R2—‘‘simply disconnected’’—parallel-connected bonds of the poor-conductor
phase. The resistancer m assumes with equal probability values from the smearing region.17
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A characteristic of inhomogeneous media which is just as important asse is the
relative spectral densityCe of the excess 1/f noise. There are a large number of works
devoted to the investigation ofCe in two-phase media near the percolation threshol
~Ref. 6; see also the references cited in Ref. 14!. The problem of determiningCe in
macroscopically inhomogeneous media is formulated similarly to these problem—to
determineCe , expressed in terms of the second moment of the Joule-heat distributi
from prescribed local valuesC(r ):24

Ce5
^C~r !~E~r !• j ~r !!2&

~^E~r !&•^ j ~r !&!2
5

^C~r !s2~E~r !/^E&!4&
se
2 . ~3!

We note that since the local electric field normalized to the average value over the sam
enters in the expression~3!, Ce itself does not depend on the magnitude of the applie
field. For what follows, it is necessary to make an assumption analogous to Hoog
hypothesis,25 according to whichC5k/su, wherek' const is Hooge’s universal con-
stant, and it is assumed thats;n is the free-carrier density andu51.

In Ref. 14 an expression was found forCe for the caseu51 and a new~‘‘noise’’ !
percolation-like exponent in a system with ESR was calculated:

Ce;se
21l2n5s0

21 exp~2lxc!l
m1, m15y12n5nd, u51. ~4!

The calculation followed the scheme in Fig. 1, according to which the local values of
currentsj (r ) and voltagesE(r ) can be determined in the main elements of the percol
tion structure—bridge, interlayer, and resistancerm . According to the percolation ap-
proach to the description of kinetic phenomena in media near the percolation thresh
the current density is highest in a bridge and the main voltage drop is across the in
layer, so that in calculatingse the other elements of the structure are neglected.
contrast tose , the second, and not the first, moment of the Joule heat~3! enters in
Ce , so that with even greater justification only the structural elements indicated in Fig
need be considered in calculatingCe .

It was shown recently in Refs. 26 and 27 that in a number of cases the local val
of C in tunnel junctions may not depend ons, i.e.C'k/su with u50. In the model of
a percolation structure in the smearing region, we found analytical expressions forCe for
arbitrary 0,u,2 and performed numerical modeling for the two casesu51 and
u50. According to our calculations, the expressions forCe and for the noise percolation-
like exponentmu have the form

Ce;~s0 exp~lxc!
2ulmu, andmu5nd, ~5!

andmu does not depend onu.

To check the values obtained formu , a network with an ESR was modeled. In
numerical simulations it is more convenient to employ the relative spectral densitySG of
the excess 1/f noise of a volumeV, which is related with theCe by the relation
G2Ce5VSG , whereG is the conductance of the volumeV. According to Eq.~4!,
SG5(Sgi(Ui /U)

4, whereUi is the voltage drop on thei th bond,U is the total voltage
drop, andSgi is the noise of thei th bond (Sgi5$dgi ,dgi%, where$ . . . % denotes a time
correlation function!. Just as in the case ofCe defined in Eq.~3!, the fourth power of
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Ui does not mean that the intensity of 1/f noise is proportional to the fourth power of the
voltage applied to the sample—only the relative value of the voltage drop enters
SG .

At each step of the calculations a simple cubic lattice with dimensionL5a0N (a0 is
the bond length! was constructed and one possible realization of the resistance distr
tion was examined. The solution of the system of Kirchhoff equations gave the volt
on all bonds in the lattice. This made it possible to determine the conductanceG and the
noiseSG for the entire system.

The data obtained are presented in Fig. 2; the slope determines the value o
percolation-like exponentsy and m22y. As one can see, a difference between th
averages~arithmetic meansGa andSGa

and harmonic meansGh andSGh
) first appears at

l;30. This means that forl.30 the system possesses a fractal structure. Indeed, for
value N515 chosen~for N.15 the memory exceeds 6 MB, which is important fo
programming in Windows! the correlation length of the systemj;a0D

2n;a0l
n ~Ref.

14! for l'40 is already twice as large as the representative size of the sys
j/a0'30. The numerical results presented in Table I show good agreement with
analytical expressionmu5nd.

It is interesting to note that althoughCe(u51) differs exponentially from
Ce(u50), for example, forl'30 andxe50.75

Ce~u50!/Ce~u51!5elxc;109, ~6!

the exponentmu remains the same.

FIG. 2. Numerical modeling results. The conductanceG ~solid line! and noiseSG ~dashed line! are plotted in
double-logarithmic coordinates. The percolation-like exponents are determined by the least-squares m
applied separately for the arithmetic~indexa) and harmonic~indexh) means over realizations of the random
spread in the resistances:h! Gaexp(2lxc), D! Ghexp(2lxc), * ! SGa

exp(u22)lxcuu51, 1!

SGh
exp(u22)lxcuu51, h! SGa

exp(u22)lxcuu50, s! SGh
exp(u22)lxcuu50.
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In summary, it is possible to talk about a ‘‘dual universality’’ of the percolation-lik
exponentm. First of all,m, just as the critical exponentst, q, andn, should not depend
on the type of lattice~but only its dimension!; second, as the calculations presented abo
for 0,u,2 and the numerical modeling suggest, the exponentm does not depend on the
choice of ‘‘Hooge’s hypothesis.’’
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