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The excess 1/ noise in a random lattice with bond resistances
r ~exp(—A\x), wherex is a random variable ang> 1, is studied theo-
retically. It is shown that if the correlation functiddr2}~r %2, then

the relative spectral density of the noise in the system is expressed as
Co~\" exp(—\(1—py), where p.. is the percolation threshold and
m=vd (v is the critical exponent of the correlation length ahi the
dimensionality of the problejm It is hypothesized that the exponent
m possesses a dual universality: It is independen?) ¢ihd geometry of
the lattice and Pthe 8-mechanism responsible for the generation of the
local noise. Numerical modeling in a three-dimensional lattice gives
m=2.3 for /=1 andf=0, in agreement with the hypothesis. ©96
American Institute of Physic§S0021-364(16)01008-0

A large number of problems reduce to the calculation of the effective properties of
systems with an exponentially wide spectrum of resistafE&R). For example, in the
investigation of high-temperature hopping conductivity in weakly doped semiconductors
it is necessary to determine the effective electrical conductivityf a random network
with an exponentially wide spectrum of resistances — the so-called Miller—Abrahams
network? The resistance of thigh bond in this network can be chosen in the form

ri=roexp—ix), xe[0,1, I>1, (1)

wherex is a random variable with a smooth distributibr{x) which is the same for all
bonds.

As was shown in Refs. 1-4, there exists a method that reduces the problem of
determiningo, for the Miller—Abrahams network to a percolation problem. Neglecting
the pre-exponential factor, this method leadsrte= opexp(\x,), wherex, is determined
in terms of the percolation threshold of the standard two—phase problem on the same
network

J;)l D(x)dx=p¢, Jl D(x)dx=p,

X

651 0021-3640/96/080651-06$10.00 © 1996 American Institute of Physics 651



0 =zl R,
e
= R
1 !
—" 2 NEL P
e N -

v

FIG. 1. Model of a percolation structure in the smearing regidyp—resistance of “simply connected bonds”
of the good-conductor phas&,—"simply disconnected”—parallel-connected bonds of the poor-conductor
phase. The resistancg, assumes with equal probability values from the smearing relgion.

wherep is a nominal concentration of the good-conductor phase. More detailed investi-
gations of the dependence af on \ (Refs. 1 and 5—-12made it possible to find the
percolation-like exponent determining the behavior of the pre-exponential factor:

o=\ Y exp(AX,). 2)

According to these investigations, the expongisan be expressed in terms of the critical
exponent —v, well known in the percolation theory, of the correlation length
y=v(d—2), whered is the dimension of the problem.

In Refs. 13 and 14 it was shown that to describe consistently the percolation-like
behavior of the effective quantities, specificatly in systems with ESR, it must be
assumed that the system is in the so-called smearing régianalog of the region of
broadening of a phase transition in the theory of second-order phase transitions
calculating the effective quantities it is necessary to use some model of the percolation
structure in the smearing region. Such a model, which is an extension of models of the
Nodes—Lins—Blobs type11~1%0 the smearing region, was proposed in Ref(sg® Fig.

1). In Ref. 18 this model was used in systems with ESR. According to this model, the
percolation structure of a system with ESR consists of a bridge with resistance
R,~(r);Ny, interlayers with resistancB,~1/((1/r),N,), and a resistance,,. Here

(r), is the average resistance in the bridge, the average being taken over the interval of
the random variablexe (x4,1), and{1/r), is the average in the interlayéwhere in
contrast to the bridge the resistances are connected in patakein over the interval
xe(0x,). The values ofx; are related with the size of the smearing region
A—x;=X.+(1—x)A andx,=x.—(1—xXc)A.* In the smearing region the number of
resistances in a bridge and an interlayer also depends:dd,~A™ %, wherea; are

critical exponents which have different numerical values in different models. In two-
phase percolation systems the choiegs=t—»(d—2) and a,=q+ v(d—2),'° where

t andq are the critical exponents of the conductivity above and below the percolation
threshold, gives good agreement between the experimental and numerical data. In Ref. 18
it was shown that for systems with ESR the choicg= a,=1, as done for two-phase
systems in Refs. 5, 16, and 20-23, gives better agreement. For this reason, in what
follows these values of; will be adopted everywhere and both valuesagfwill be
presented only in the table. The resistanger,,(x) assumes with equal probability any
value in the intervak e (x,, X;), corresponding to the smearing region in a two-phase
system.
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A characteristic of inhomogeneous media which is just as importamt.ds the
relative spectral densit€, of the excess f/noise. There are a large number of works
devoted to the investigation &, in two-phase media near the percolation threshold
(Ref. 6; see also the references cited in Refl.. The problem of determining, in
macroscopically inhomogeneous media is formulated similarly tosthe@roblem—to
determineC,, expressed in terms of the second moment of the Joule-heat distribution,
from prescribed local valueg(r):?*

_(CMEM-j(r)?) _ (CNa*(EMIE)?)
© (EM)- (M) e '

We note that since the local electric field normalized to the average value over the sample
enters in the expressidi3), C, itself does not depend on the magnitude of the applied
field. For what follows, it is necessary to make an assumption analogous to Hooge’s
hypothesig® according to whichC= «/o?, wherex~ const is Hooge’s universal con-
stant, and it is assumed that-n is the free-carrier density ang= 1.

()

In Ref. 14 an expression was found 10 for the cased=1 and a new(“noise”)
percolation-like exponent in a system with ESR was calculated:

Ce~0o N?=0yt exp(—Axc)A™, my=y+2v=vd, 6=1. (4)

The calculation followed the scheme in Fig. 1, according to which the local values of the
currentsj(r) and voltage€(r) can be determined in the main elements of the percola-
tion structure—bridge, interlayer, and resistamge According to the percolation ap-
proach to the description of kinetic phenomena in media near the percolation threshold,
the current density is highest in a bridge and the main voltage drop is across the inter-
layer, so that in calculatingr, the other elements of the structure are neglected. In
contrast too,, the second, and not the first, moment of the Joule k®&aknters in

C., so that with even greater justification only the structural elements indicated in Fig. 1
need be considered in calculatiy .

It was shown recently in Refs. 26 and 27 that in a number of cases the local values
of C in tunnel junctions may not depend on i.e. C~ «/ o’ with #=0. In the model of
a percolation structure in the smearing region, we found analytical expressidbg fiar
arbitrary 0<6<2 and performed numerical modeling for the two cagesl and
0=0. According to our calculations, the expressionsGgrand for the noise percolation-
like exponentm, have the form

Ce~ (09 expAXe) ~A™,  and m,=vd, (5)

andm, does not depend oé.

To check the values obtained fom,, a network with an ESR was modeled. In
numerical simulations it is more convenient to employ the relative spectral d&psiy
the excess 1/ noise of a volumeV, which is related with theC, by the relation
G2C,=VS;, whereG is the conductance of the volumé. According to Eq.(4),
Se= 2 S;i(U; /U)#, whereU; is the voltage drop on thigh bond,U is the total voltage
drop, andSy; is the noise of théth bond Sy =1{59;,59;}, where{. ..} denotes a time
correlation function Just as in the case @&, defined in Eq.(3), the fourth power of
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FIG. 2. Numerical modeling results. The conducta@césolid line) and noiseS; (dashed lingare plotted in
double-logarithmic coordinates. The percolation-like exponents are determined by the least-squares method
applied separately for the arithmetiadexa) and harmonidindexh) means over realizations of the random
spread in the resistances]) Gzexp(—Ax), A) Gpexp(—Ax), *) SGaexp(afz))\xJH:l, +)
Se,€XPE—2)NXlp-1, 0) Se €XPO—2)\Xd g0, O) Se, €XPE—2NXg-o.

U; does not mean that the intensity of hise is proportional to the fourth power of the
voltage applied to the sample—only the relative value of the voltage drop enters in

Ss.

At each step of the calculations a simple cubic lattice with dimenisiemgN (ag is
the bond lengthwas constructed and one possible realization of the resistance distribu-
tion was examined. The solution of the system of Kirchhoff equations gave the voltage
on all bonds in the lattice. This made it possible to determine the condud&anoe the
noiseSg for the entire system.

The data obtained are presented in Fig. 2; the slope determines the value of the
percolation-like exponenty and m—2y. As one can see, a difference between the
averagesarithmetic mean§, andSg_ and harmonic mear(s, andSg ) first appears at
A~ 30. This means that for> 30 the system possesses a fractal structure. Indeed, for the
value N=15 chosen(for N>15 the memory exceeds 6 MB, which is important for
programming in Windowsthe correlation length of the systeén-agA™"~agh” (Ref.

14) for A=~40 is already twice as large as the representative size of the system

&lag~30. The numerical results presented in Table | show good agreement with the
analytical expressiom,=vd.

It is interesting to note that althougit.(#=1) differs exponentially from
Ce(6=0), for example, fol~30 andx,=0.75

Ce(#=0)/C(6=1)=€"~10, (6)
the exponentn, remains the same.
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TABLE I. Comparison of the results of an analytical calculation of the percolation-like exponemts
m with data from numerical modeling.

y m; m;—2y My my—2y
a=a,=1 0.89 2.67 0.89 2.67 0.89
a=t—v 0.56 2.30 1.18 2.03 0.84
C(2=q+ 14
Numerical 0.6+0.1* 2.30 0.78 338 2.26 0.74°33,
modeling 0.76+x0.04

"The values obtained for the exponents in the model of a percolation structure in the smearing region are
presented in the first two rows. The numerical values of the critical exponent$=ate94, q=0.75, and
v=0.89. The value off marked with the asterisk was obtained in Ref. 9.

In summary, it is possible to talk about a “dual universality” of the percolation-like
exponentm. First of all, m, just as the critical exponentsq, andv, should not depend
on the type of latticébut only its dimensiojj second, as the calculations presented above
for 0< #<2 and the numerical modeling suggest, the expomedbes not depend on the
choice of “Hooge’s hypothesis.”
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