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The behavior of 1f/ noise effective intensity in two-phase percolation systems and percolationlike systems
with an exponentially wide distribution of bond resistances is reviewed. Monte Carlo simulations on random
resistor networks are performed. For a two-phase system the numerical values of noise critical exponents
k=1.54+0.025, ' =0.61+0.02, w=6.31+0.25, andw’'=6.9+0.25 are found in agreement with theoretical
analysis performed with the help of a hierarchical model of a two-phase percolation system. For a system with
an exponentially wide spectrum of bond resistances, i.e., a system in which bonds take on resistances
r=rqexp(—\x), wherex>1 andx is a random variable, it is assumed that in the individual resistors the noise
generating mechanism obeys the fofar}~r2*?. In this case the effective noise intensity=SQ, where
S is the relative power spectral density of system resistance fluctuation@ @the system volume, is given
by C.~\"™exp(—\6x;), where 1-x. is the percolation threshold. The exponents “double universal,” i.e.,
it is independent of lattice geometry and of the microscopic noise generating mechanism. Numerical simula-
tions performed foré=1 and O give approximatelyn=2.3 and confirm this “double universality” of the
exponentm. The connections betweenfIioise effective intensity and effective susceptibility in a two-phase
weakly nonlinear percolation system are also establisf&tD63-651X96)04405-4

PACS numbd(s): 64.60.Ak, 64.60.Ht

[. INTRODUCTION lated[1]. Utilizing this property one can calculate the effec-
tive noise intensity in terms of the second moment of the
When electrical current flows through a conductingJoule power dissipated in the mediugl,
sample the spectral density of voltage fluctuations increases e
in comparison to that observed in equilibrium conditions (C(NIE(r)-](N1%
(Nyquist noisg¢. This additional noise indicates a strange e~ [(E(F)-f(F))]Z ' (2)
property—its relative power spectral densitRPSD is ) )
roughly inversely proportional to frequency. For this reasonyhereE(r) andj(r) are the local electric field and current
this type of noise is often called fLhoise. Other names are density, respectively, and averaging is over the whole
resistance(conductancenoise, current noise, excess noise,sample. Thus to evalua@, it is necessary to know not only
or flicker noise. The paper deals with the problem of estimatthe spatial distribution of the local noise intens@@yr) but
ing the 1f noise intensity in macroscopically disordered me-also the distributions of currents and fields. The important
dia. information that can be read from E(®) is that only these
Let us recall fundamental definitions. Consider a resistoparts of the medium, in which large dc currents flow, pro-
characterized by resistand® its fluctuation 6R, and the  duce large contributions to flhoise effective intensity.
volume Q) which the resistor occupies. Then power spectral The above considerations are valid also for percolation
density of SR is Sg={ SRR}, whereas RPSD i§=Sg/R’.  systems which recently have attracted much interest. For ex-
{} denotes the Fourier transform of the time correlation funcample, for percolation on a discrete lattice every boraf
tion. Theeffective noise intensiig defined a.=QS. Vyith the lattice is randomly occupied by a resistance which a
-0 C, becomes théocal noise intensityt the pointr, small fluctuating termr; is attributed. RPSD obr; is con-
. sequentlys;={ér {}/r { whereas the local 1/noise intensity
C(r)= S')'mOQS' (D) ¢ =sad wherea, s the lattice spacing, aniis the dimen-
- sionality of the lattice. Consequently E@) transforms to

It is well known that fluctuation$R are spatially uncorre- [3]

c —Qs—ade 2i|i45iri2 —ade Ein‘Si/riz (3)
* - - '~ 12,02 SEVZPRYA
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wherel; (V;) is the current(voltage in a bondi when an ge~oy7t for p>pe, oe~or 79 for p<pe.
external unit currentvoltage is applied to the lattice of size 7

L (in units of ag). Equation(3) enables us to write down

simple composition laws which, in analogy to Kirchhoff's As we see, the exponertteindq describe the critical behav-
laws, make the calculation of flinoise RPSD for simple ior of the effective conductivity and for this reason are often
resistor circuits possible. Namely, whéhresistors each of called conductivity critical exponents.

resistance; , and RPSDs; are connected in series or parallel ~ Studying the behavior of 1/noise in the vicinity of the

we have percolation threshold we are interested in expressing
C(7,h) in forms similar to those just obtained for the effec-
N ri\? N IR\2 tive conductivity[Eqgs.(5) and(6)]. However, unlike the case
S:i—El (ﬁ) si or S= iZl (E Si, (4 of o, in the case ofc, bounding its expansion to the first

terms may not be adequate. For example, above the percola-

respectively, and is the total resistance ar®lis RPSD of a  tion threshold it has been shown-13 that the contribution
given connection. of the insulating component which manifests itself through
To evaluateC, it is necessary to know not only a spatial the higher order terms in the expansmrf_lgfmay turnoutto
distribution of the local noise intensit¢(f) but also the P& not only a correction but rather an important, not negli-
distribution of currents and fields and the solution of thisgible contribution. It is not so obvious since fpep. a dc
problem is usually not an easy task. To our knowledge neurrent flows in the medium mainly through its metallic
general expression for a dependenceCgfon the composi-  Parts. _ _
tion of the disordered system with arbitrary type of random-  Until now we have considered two-phadé) percolation
ness has been delivered until now. However, heterogeneotiedia which are characterized by the following resistance
media which are close to the percolation threshold behave iffistribution:
many circumstances in a universal way. For example, it is
well known [4,5] that effective conductivityr, of a binary f(N=pd(r—r)+(1=p)a(r=ry), r>r; (8
(two-phas¢ composite with component conductivitias;
(meta) and o,<0y (“insulator”) behaves like the order pa-
rameter in the second order phase transif®h and can be
described by the scaling form

wherer, andr, are resistances which each bonaf the
lattice may take on in a random way with probabilitigsnd
1-p. They are related to the component conductivities,
r,=a2 ¢, r,=a3 " %c,. There is, however, also a very
_ s u _ s u interesting case of continuous resistance distributions. In this

oe(m) =0 Fa(r phiw) =R (o), ) case the strong heterogeneity can be maintained if the
where=(p—p.)/p. is a relative distance from the percola- “Worst” resistance which may appear in the system is much
tion threshok*)c’ p is the concentration of a metadonduc- greater than the “best” one. As an example one can consider
tivity o), h=0,/0,<1, u is the usual scaling parameter, and here the case
F, andF are scaling functions. Exponengsand u can be N
expressed in terms of other critical exponenendq, s=t/ r=r(x)=ree ", ©)
(t+q), u=s/t. The scaling functior (z) approaches a finite
limit for z—0, whereas it behaves like a power-type function

at z—*o. Expanding Eq.5) at h=0 or at =0 one can h Lo ided Cin thi h .
obtain relations fowr, above p>p.), below (p<p.), and at eterogeneity Is provide by>1’ In this case the maximum
resistance which appears in the latticg,,=ro, is many

the percolation threshold in the so-called smearing region, q : itude | h il A

which is the analog of the smearing region in the theory offd€rs ol ‘magnitude - larger than the minimum —one,

the second order phase transition, _rmi“:rOeXp(_)‘)' As an Important example, which can b_e
just reduced to such a simplified problem, we recall the high

wherer; is the resistance of thigh bond andx[0,1] is a
random variable with a smooth distributidd(x). Strong

=017 (Ag+Ahr TP 4.0 temperature hopping conduction. In high temperatures we
may neglect dispersion of energy levels on the localization
for p>p. and for 7>A, (63) centerd14] andr — e hopping becomes hopping. Although
the case with a continuous distribution of bond resistances
Oe= 0| 7| "U(Bo+Byh| 7| TtV 4.0, defined by Eq.(9) is not the classical percolation—it does
not exhibit the percolation threshold at which one of the two
for p<p. and for |7|>A, (6b) components forms an infinite percolating cluster because the
components as such do not exist—there is the well known
To= 01*503(D0+ D;h~ Yt rp . approach15—-17 which allows one to reduce the problem
with a continuous distribution of resistances to the standard
for |7|<A, (6c)  percolation. Recently it was also shoyt8,19 that for ob-

taining a not inconsistent percolationlike description of the
where A=h¥"9 js the width of the smearing regidd,5]  behavior of effective quantities in such media it is necessary
andAj,A;,By,B;,Dy,D, are constants of order unity. One to assume that the system is in the smearing region. A model
has to point out that wheh<1 it is acceptable, in the first- of a percolation system in this region has also been recently
level approximation, to bound the above expansionfjp  proposed?20].
By, andD only. Thus the well known behavior of remains In the present paper in Sec. Il a hierarchical model of a
by this approximation reconstructed, TP percolation systerth+#0) is presented and, on its basis,
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threshold, has also been propo$28-27. According to this

Y model the main part of the voltage applied to the heteroge-
£ neous system drops on poorly conducting bonds which form
— an insulating interlayer placed between isolated clusters of
Ry roron metallic bonds. These poorly conducting bonds in a given
- RN interlayer are connected in parallel and it is accepted to
! call them singly disconnected bonds, since they disconnect

separate metallic clusters. Thus resistaRgef an insulating

P>pe interlayer consists o, resistances, connected in parallel

R, 2 [see Fig. b)]. The numbem, diverges at the percolation

) — I d) — threshold N,~| 7| ~ %2 with a,=1. It has also been proposed
[28,8] to assumea;={g=t—v(d—2) and a,={z=q

R R +v(d—2), wherev is the percolation correlation length ex-

e) It N = — ponent,é~|7~" (in units of ay). Note that in this case the
—— models described above lead directly to E@) and this
R R R means that these simple models can give only the first main
— —— terms of the expansions of, given by Egs(6a) and(6b).

g R R I h) n ~ Forh=0,/0,=0 (0,=0, p>p, Or 5=, p<p) consecu-
——— — tive terms of the expansion in E(6) are absent. However,

in real physical systemis is always finite, and further terms
of the expansion may play a non-negligible role. It is even
possible to have physical processes for which the critical
behavior is mainly determined by the second terms of expan-
sion in Eg.(6) [29]. A model which takes into account the
second and the next terms of the expansions should include
simultaneously a metal bridge and an insulating interlayer
both above and below the percolation thresH8l The first
stages of such a hierarchicalith respect toh) model of a
percolation structure are also shown in Fig. 1. Borp,
current mainly flows through a metallic bridge of resistance

FIG. 1. Hierarchical model of a two-pha&EP) percolating sys-
tem of sizeé—the percolation correlation lengtfe) R; is the re-
sistance of a percolating metallic bridge. It is composed pfre-
sistorsr . (b) R, is the resistance of an “insulating” interlayer. It is
composed ofN, parallel resistances,. The numberdN; and N,
diverge at the percolation threshold;~| 7|~ %1 and N,~| 7| ~“2.
Hierarchical schemes model a TP system ab@e# column or
below (right column the percolation threshold. In the first leugl

of the hierarchy a TP system is modeled by resistactor p>p, : . - ; .
(c), or by resistanc&, for p<p. (d). In the next leveldll,lll,...) Ry, as is seen in the firgt) level of the hierarchyFig. 1(c)].

resistance®, andR; are added alternatively in parallel or in series N the secondll) level an insulating interlayer of resistance

to the element®, andR, added in the previous step of a generation Rz IS 2dded in parallel t&,, as in Fig. 1e). Note that volt-
(&—(h). age drops orR; andR, are in fact the same and electrical

breakdown might take place faster in the insulating interlayer
. . . L . than in the metallic bridg€20]. It means that an element of
the critical behavior of the effective noise intensiB¢ IS he structure, which appears to be unimportant at first glance,
evaluated. In Sec. Il results of numerical simulation of a TPgiving only a small correction of the order b=~ (*®<1 to
of the nonlinear susceptibility in random weakly nonlinearthis argumentation is also valid even for0, i.e., the ele-
two-phase systems are supplied. In Secs. V and VI the benent of the structure which does not exist from the point
havior of C, in systems with an exponentially wide spectrum of view” turns out to be an essential one. A similar situation
of bond resistances is described. is also possible fop<p.. Here a supplementary element of
the percolation structure—a metallic bridge—may become
essential if a breakdown phenomenon is based upon Joule
IIl. HIERARCHICAL MODEL OF A TWO-PHASE heating, i.e., in a case when a breakdown takes place once
PERCOLATION SYSTEM i>jc, Wherej, is a critical current.

The consecutive steps of the hierarchical model are pre-
sented in Fig. 1. Further steps of the hierarchy may be con-
tinued as long as necessary—each successive step represents
a successive term in the expansionogfgiven by Eq.(6). It

A model allowing quantitative description of current flow
through a heterogeneous medium for p. has been devel-
oped by Skal and Shklovsk21] and de GenngR2]. A very

basic assumption of this model is that on distances of th, ¢ showrg] that it is possible on the basis of this hierar-
order of percolation correlation length(see Ref[23] fora  ¢phjcal model to write down a self-consistent equation, the
review of percolation current flows through singly con- analog of the Dyson equatidi80], which includes all the
nected strings or bridges formed from a metallic componengembers of the hierarchy. In the case of effective conduc-

which joins nodes of the backbone of an infinite metallictivity this equation in symbolic representation has the fol-
cluster. Bonds contributing to the given percolating bridgelowing form:

are nonparallel ones and are often referred to as singly con-
nected bondgSCB’s). When approaching the percolation
threshold from above, the numbily of SCB’s diverges as Re
N,~7 “ and it is widely accepted that exponeai=1 EJR; []Rl forp>p, and
[21-24,14. Thus that resistanc®, of a metal bridge is 3
R;=Njr; [see Fig. 1a)].

A similar model, but one which is below the percolation

for p<p,
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whereR, is related too, via 0= (2¢)* /R, The solu- TABLE I. Summary of the recent numerical estimates of the
tions of these symbolic equations expanded in powers of thisansport percolation exponents in 2D and 3D.

small parameteh|7|~ ("9 reconstruct series in Eq$6a)
and(6b). The analog of the Dyson equation in the case of the t q v
1/f noise effective intensity can also be written doj/& D 13038 1.30% 4

3D 1.94 0.75 0.89
S
s %Referencd 32].
§= forp>pe and | |S= forp<pe bReferencd 23].
5 5 ‘Referenceg 33].
dReferencd 34].

whereS, andS, denote 1f noise RPSD’s of a metal bridge exponentsy, e, and a,. In spite of this difference the nu-

and an insulating interlayer, respectively. merical values predicted by both approaches are nearly the
The calculation of 1/ noise RPSD for the model in Fig. same. _ .
1(e) enables an estimation &, for p>p.. In the three- In a quite similar way we can obtain the behavior of the
dimensional(3D) case we have noise effective intensity fop<<p. [8],
C1jIETQ:/Q+Cyj5E50,/0 Ce(7<0)=Cyl7| '+ Cih?7| ™™, p<p. (14
e~ 0_2<E>4 ’ (10)
e

wherew’ = k+2(t+q). Eventually, havingC, both above
and belowp. described, we can fin€C, also inside the
smearing region. The simplest way is to insert
|4=A=h"Yt*9 in either of Eqs(12) or (14),

wherej, andE; are the electric current density and field in
the bridge, whilej, and E, are those in the interlayer, and
Q,=adN; andQ,=aiN, are the bridge and interlayer vol-
umes, respectively)=(a,&)? is the volume of the hyper-

_ —«l —k'l
cube with the linear size equal to the correlation length Ce(lrl~A)=C;h~ /(4 Cop = /(4
Denoting as¢ a potential difference on a distance of the
order of £ we have for [7]<A. (19
_ @ @ _ @ ¢ In the next section the above results are verified by means
Jl:R ad 1’ Elza N’ Jzzm, Ez=a—- of Monte Carlo simulations of a two-component random re-
1<0 oL 2% 72 ?11) sistor network.
Inserting Eq.(11) into Eq.(10) one obtaing8] . NUMERICAL SIMULATIONS
Co(r>0)=C,7 "+ C,h27 %, p>p (12) In the preceding section the behavior of thd hbise
e 1 C

effective intensity in a TP percolation system has been de-
where k=dv—a;, W=«'+2(t+q), and ' =vd—a,. The scribed. One of the conclusions was that above the percola-

major conclusion that can be read from the above result igo_n threshold’ either the exponent or the exponent
that under certain conditions the second term in(@g) can  W=2t+2q+«’ may describe dependence of the effective

be much greater than the first one. This means that the noid¥iS€ intensityC, on the concentratiop (or 7). Which of the

originating from an insulating phase describes the macrotWo i observed in a particular system depends on the rela-

scopic noise also above the percolation threshold in spite dfon between magnitudes @,/C, andh. Namely, for

the fact that in this region the effective conductivity is de-

scribed by a metallic component. This phenomenon was sug- &<h(xﬂ(’>/<t+q> (16)
gested by Mantese and Weffil] and Tremblay, Fourcade, C,

and Breton[7]. Equation(12), which is its quantitative de-

scription, was derived by Morozovsky and Snarsigi. the second term in Eq12) prevails over the first one also at
Other derivations of Eq(12) have also been proposed the border of the smearing region, i.e., fef=A, and this
[9-12. They are based on scaling properties that have beefeans that the exponewt describesC, versusr above the
assumed for the functioB(7,h). These approaches lead to percolation threshold. Otherwise @ versusr one observes
the main result of Eq(12), although predictions for the ex- the exponent.

ponentsx and «” are different. Within the framework of the It is seen from Eq(16) that to decide whether the behav-
hierarchical model of the percolation structure considered s&r of the 1f noise intensity is described by exponarntr by

far, the critical exponents of flihoise are exponentw one has to know numerical values efand «'.
At first let us note that assuming,={z and a,={s and
k=vd—a;, «k'=vd—a,. (13 putting into Eq.(13) the best numerical estimates of expo-

nentst and g and v which are gathered in Table | gives
Scaling analyses predict thatand «’ are simple combina- «=1.58 and«’=1.01 in 3D ork=«'=1.37 in the 2D case.
tions of the members of the family aidependeninultifrac-  On the other hand, whew;=a,=1 is assumed, we get
tal exponents and cannot be expressed only in terms of the=«'=1.64 in 3D andk=«"=1.67 in 2D.
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TABLE Il. Summary of numerical and renormalization gro{iRG) estimates of the noise critical expo-
nentsk and ' in 3D.

Rigorous
Numerical simulations RG boundé&
K 1.47°1.57¢1.589 1.49¢ 1.58" 1.469 1.88" 2.43" 1.831 2.331 2.34 1.53<k<1.6
K 0.55' 0.58%0.68! 0.74 0.68" 0.38<«’'<1.02
3Referencd27].
bReferencd 35].
‘Referencd 36].

YReferencd37], deduced from multifractal exponents.
‘Referencd9], deduced from multifractal exponents.

'Referencd 10], deduced from multifractal exponents.
9Referencq 38], deduced from multifractal exponents.

"Referencd40] (cell-to-cell RG.
'Referencd40] (two-parameter cell-to-cell RG

IReferencd41] (Migdal-Kadanoff bond moving method

KReferencd42] (cell-to-cell RG.
'Referencd 13].

MReferencd39] (Migdal-Kadanoff bond moving method

For the 2D case the major conclusion is straightforwardthe above considerations are valid also in the finite size scal-

Sincex=«' the ratioC;/C, alone decides which of the two
terms in Eq(12) dominates the effective noise intensiy.

ing behavior of the effective noise intensity.
Similarly we can analyze the behavior 6f, below the

WhenC;<C,, noise originating from the insulator and the percolation threshold, i.e., fgv<<p.. If inequality opposite

corresponding exponenv are observed also fop>p..
Since in 3D the choicea;={r, a,={¢s predicts x>«

whereask=«' for ¢;=a,=1, computer simulations are nec-

essary in order to calculate numerical valuesc@nd «’. In
Table Il numerical estimates of and «' in 3D are summa-
rized. It is evident that in 3Dc>«" and the condition of Eq.

to the one given by Eq16) is fulfilled, i.e., if

&>h<xw’>/<t+q>,
2

(18

then the effective ¥/ noise intensityC, originates mainly

(16) leads to slightly stronger requirements for the exponenfrom the resistance fluctuations in a metallic phase and con-

w to be observed fop>p.. Using the data of Tables | and
Il we roughly estimate that,/C,>h"%3is large enough to
make the second term in E(L.2) greater than the first one at
=A.

Equations(12), (14), and(15) are valid in the thermody-
namic limit, i.e., forL—oe. In practice, to fulfill this require-
ment it is sufficient to keep the linear siteof the system
much greater than the percolation correlation lengjtiihe
latter, in the critical region, diverges &s-|71” and thus it

sequently the exponent’ describesC, versust behavior.
Otherwise the noise from an insulator dominates the macro-
scopic fluctuations and the exponetitshould be observed
[see Eq.(14)]. These conclusions can be easily extended to
the finite size scaling behavior &@.. Numerical studies of
this behavior should enable one to distinguish between two
C. versusL dependencies; the one dominated by the expo-
nentw’/v and the other one dominated by the exponénht.

To test theoretical predictions of the preceding section,

may require a large computational effort to reach the therfinite size calculations of the 3D two-phase percolation sys-

modynamic limit in the vicinity of the percolation threshold;

tem have been performed. The preliminary results have al-

lattices of large size have to be simulated. To avoid thisyeady been published 3]. The bonds of a simple cubic lat-
finite size scaling is usually employed. The simplest way tatice were occupied randomly by resistances according to the

find the size dependence of any quantity Eog¢ is to re-
. . . . —1/1/

place|7 in thermodynamic equations with . In the case

of effective noise intensitfC, we thus obtain

Co(L<é)~CiL"+Coh%LYY  for p>p.. (17

Again one of the two terms can dominate t@g versusL
behavior depending on the rati@;/C, and h. If for the
largest size available, i.e., far=¢&~A""~h""*9 (note
that for the TP systerfi““saturates” atA™ " inside the smear-
ing region), the second term in Eq17) is much greater than
the first one, the exponemt/v should be observed o6,
versusL plots. Otherwise the exponerf{v should be ob-
served. This leads again to the condition of ELp) and all

probability distribution of Eq. (8) with r,=1 and
r,=1h=10". The calculations were performed at the
percolation thresholdp=p.=0.2492 [23] to maximize

the percolation correlation length and thus to make the
finite size scaling possible. Indeed ai, we expect
E=A""=h"" D=~ _10"8 which is much greater
than the largest lattice sizk=22. Once the lattice was gen-
erated a unit external voltage was applied to the opposite
sides of the lattice. Free boundary conditions were used in
the remaining two directions. Next, internal voltages on all
the bonds in the lattice were evaluated. The lattice conduc-
tanceG was calculated as the total power dissipated in the
network. The effective noise intensit§, was calculated
with the help of Eq(3) for various values of the ratio of the
component noise intensities. Namely, for the fixed value
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IV. NONLINEAR SUSCEPTIBILITY

10° i Recently a number of papers have appeared which deal
with a weakly nonlinear TP random system. In such a system
10 both its components may indicate a weak cubic nonlinearity,
MD,I:(D/ which just means that current density depends on electrical
107 field asj;=oiE;+ xi|Ei|’E; , wherey; is the nonlinear sus-
/[E/Tﬁ/o’o/( ceptibility of the component (i=1,2). Since the work of
10° It Stroud and Hu{43] and Aharony[44] it is known that the
/[f/ /J{‘L{o effective nonlinear susceptibility, of the whole TP system
c 10° ]/r is related to the fourth moment of the local field distribution,
e /f xe~ {x(NE()*), and the problem becomes mathematically
10* b equivalent to the estimation of effectivef Ioise intensity,
}/ Xe~Ce0o2 for the system with the local noise intensity
10° C(r)= x(r)/o®(F). Thus the critical behavior of, is given
immediately from the equations describing the behaviors of
10% w A the effective noise intensity and the effective conductivity,
10! - M )
Xe(7>0)=Cq(7>0)0og(7>0)
10° t —t—T— 2 ot 2t— -2q-«'
4 5 6 7 8910 20 =Co(7>0)a 2 = x 7 "t xor 297"

b~

for p>p¢, (19
FIG. 2. The effective ¥/ noise intensityC, as a function of
lattice sizeL. Simulations were performed for a 3D two-phase per-
colation system withr;=1 andr,=1/h=10" at the percolation
thresholdp=p,=0.2492.C, was calculated for various values of

Xe( 7<0)=Cq(7<0)02(7<0)

the ratio C;/C,. Namely, for C;=1 and various values of =Ce(7<0)ff§7'72q
C,=10"% (circles andC,=1 (crossesfor nonpercolating samples , ,
and C,=10%° (s d C,=1 (triangles f lati = X2l 7| 7297+ x| 729
2 quares and C, (triangles for percolating X2 X1
samples. The slopes of the lines which are the least squares approxi-
mations of the data are 7.2D.2 (squareg 1.75+-0.025(triangles, for p<pc, (20)

7.84+0.02 (circles, and 0.6%0.02 (crosses C, is in units of C;
(triangles, h?C, (squarek C, (crossel andC;h? (circles. L is in B 2
units of lattice spacingy, C;, andC, are in units ofad/Hz. Xel|11<8)=Ce(|7|<A)og(|7[<A)

. B =C.(l7l<A 0_2q/(t+q)0_2t/(t+q)
C,=1 various value€,=10"%, 1, and 16° were assumed. ol 7l=a)oy 2

Thus either of the conditions of Eg&l6) and(18) could be :th(ztw)/(t+q)+X2h7(2q+x’)/(t+q>
fulfilled and the ideas of the preceding section were tested
numerically. To refer to either above or below threshold be- for |7]<A. (22)

havior we gathered percolating and nonpercolating samples

in separate ensembles, in whiGhand C, were then aver- Thus it is surprising that the authors of Rp45] who start
aged. Results are shown in Fig. 2. For percolating samplegist from Eqgs.(19)—(21) for the nonlinear susceptibility ar-
the slopes of the lines in this figure are 744002 and 1.75 rive at the results and conclusions forf Hoise which are
*0.025 when the condition of Eq16) is fulfilled or not,  different from those given by our Eqgl2), (14), and(15).
respectively. Thus the exponemtsand can be estimated as
w=6.31+0.25 andx=1.54+=0.025, in quite good agreement \, ;s NOISE IN SYSTEMS WITH AN EXPONENTIALLY
with the predictions of the preceding section, WIDE SPECTRUM OF RESISTANCES
w=2(t+q)+«'=6.39(7.02 and k=dv—a,=1.58 (1.64).
Similarly, for nonpercolating samples the slopes of the lines As has already been mentioned in the Introduction, the
are 7.84-0.2 and 0.690.02 if the condition given by distribution which obey resistances forming a random resis-
Eq. (18 is fulfiled or not, respectively. They lead to tor network depends on a structure being modeled. In many
the estimates of exponents’=6.9+0.25 and «'=0.61  physical cases this distribution is very wide even on a loga-
+0.02, which are again in quite good agreement with theofithmic scale. To be more precise, in this case bonds are
retical predictions w'=2(t+q)+«=6.96 (7.0 and occupied in a random way by resistances which obey the
K'=dv—a,=1.01(1.64. form of Eq. (9), wherex is a random variable sampled be-
In conclusion, our numerical simulations confirm the va-tween 0 and 1 according to a smooth distributia(x) and
lidity of the analysis performed in the preceding section.parameter\ takes on the values much greater than unity,
This strongly supports the usefulness of the hierarchicah>1. It was shown[14—17 that such a network can be
model of the TP percolation system which has been used isolved when treated as the usual percolation problem. In a
the derivations of theoretical results. crude approximation the network effective conductividy,
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is described by the largest resistance which opens the perco- Ry
lating cluster, namelyg.~exp(\X.), wherex. is related to R2
the percolation threshold in a classical percolation, i.e.,
R2 r,
1
JX D(x)dx=p¢ FIG. 3. A model of a two-phase percolation system in the
C

smearing region. Resistancé®, and R, take on fixed values

is the fraction of bonds required to form a cluster which 'ilxz)'\ilﬂgiﬂrx(xi)(’lTZX:)I\iz(‘TTlL: fg;(ﬁg{cfhféi;é?f; r(aln_
starts spanning the network. A more detailed treatment leadg ¢ 2 e e "

L9, . . om valuer ,=r(X,,), wherex,, is a random variable which is
to the derivation of the preexponential factor im, m o m
sampled over the smearing region.
[17,21,46-50) P greg

on fixed values which are equal to those achieved at
e~ NV exp(AX). (22 the border of the smearing regioR;=N;(|7]|=A)r(x,),
R,=N,(|7|=A)r(x,), where x;=X.+(1—X)A, X,
It was shown by the number of meth({m,47—49 that the :XC_(l_XC)A' Unhke Rl and R2 the resistancem takes
exponenty is related to the percolation correlation length on random values,,=r(x,;), wherex,, is a random variable
exponenty, which, in the case of the EWSR system, is uniformly
sampled over the smearing region. Basing on this model it
y=1(d—2). (23)  can be showri19,54 that for —2<#<2 the effective noise
intensity obeys the form
Very recently an approach was propog&8-2Q which
also enables one to determine the exponenin this ap-
proach the system with an exponentially wide spectrum of Ce~ A" exp(—NOXc), (25
resistanceEWSR) is treated as a TP percolation system
working inside the smearing regidr20]. Basing on this, where exponentn for A—x and #=1 is given by[19]
Morozovsky and Snarskii have shown thag]

21—yt 20(d—2) m=y+2v. (26)

y= 5 . (24

For a;=a,=1 we havey=v(d—2) and Eq.(26) reads

Note that in terms of widely accepted values @f=a,=1
[21-27, Eq.(24) reduces to Eq.23). For a;={g anda,={g
we get, howevery=(t—q)/2[19]. For dimensiord=2 both
the results coincide, givingg=0. Using the estimates of
Table | we have in the 3D cas&d—2)=v=0,88 whereas As in the case of the exponent the estimate$26) and
(t—q)/2=0.6. Numerical simulations of the EWSR system (26') give the same resufh=2v in 2D. In 3D our numerical
of TyC and Halperin givey=0.6+0.1[48], whereas our re- simulations presented in the next section, although they can-
cent numerical data givg=0.76 (+0.09, —0.09 [51] and  not definitely reject any of the estimates of E§86) and
the rejection of any of the above predictions cannot be dong26’), fulfill almost exactly the relatiorm=3y and this

While, as we have discussed in the previous sections, means that the choice,=a,=1 seems to be more appropri-
number of works deal with 1/noise in TP systems, in ate to model EWSR systems. This is well understood, since
EWSR systems investigation has only recently startedn the EWSR system the “metallic” cluster is formed from
[19,51. To our knowledge, until now there has been nobonds withr;=<r.. r. is obviously the resistance of the
unique theory predicting the value of the local noise intensitypbond which opens the percolating cluster, i.e., it is SCB.
C, in the hoppinglike conduction; fLhoise is still the subject Other metallic bonds which are mostly in blobs of the me-
of controversy and increasing interest. Nevertheless, thergllic cluster have much smaller resistan¢dae to a wide
are suggestions that may obey the form ofs,~r?. For  resistance distributionand thus the influence of blobs on
example, the Hooge phenomenological formid], C~1/  transport properties is not so large as in TP percolation; the
n, wheren is a concentration of current carriers, suggestdlow of a current is governed by the SCB’s rather than by the
(via 0~n) s~r! and thus#=1. Another example is the noise whole backbone of the percolation cluster.
in a single constriction contact whef83] s~r3 and thus Very recently an interesting feature of the exponent
0=3. In fact, in our case the most appropriate valueg afe  describing the preexponential factor in E@5 has been
those predicted by 1/noise generated in tunnel junctions. observed[54]. It has turned out tham is 6 independent

To calculate the effective noise intensity of the EWSRalthough the noise intensity itself is strondlyxponentially
system Morozovsky and Snarskii have used a model of th@ dependent. Thus the exponemt emerges as @OUBLE
percolation structure in the smearing regif20]. In this  UNIVERSAL. Apart from the usual percolation universality,
model a current flows simultaneously through an “insulat-i.e., independence of the lattice geometry, it is also indepen-
ing” interlayer of resistanceR, and a “metallic” bridge dent of the microscopic noise generating mechanism. This
of resistanceR; which is in series with supplemental resis- conjecture is confirmed also by numerical simulations pre-
tancer ,,, as is seen in Fig. 3. The resistanégsandR, take  sented in the next section.

m=dv. (26')
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FIG. 4. Finite size scaling of the conductan@Ge(in units of )
go=1/rp) of 3D lattice of the sizeL with an exponentially wide 102 4
spectrum of resistances. The points are the results of numerical !

simulations.G is the average in the ensemble of several hundred 10 100
realizations forL =15 up to several thousand realizations lfo¢5. 1
On the vertical axis the value,=1—p,=1-0.2492 was used in . .
FIG. 5. Results of numerical studies of conductai@eand

the rescaling of conductance. Simulations were performed for - S
A=140, which causes the system to be not in a homogeneous r@OWer spectral density of conductance fluctuati®asin random

gion, sinceé=\"=85>L (bothL and¢ are in units of lattice spac- resistor network with an exponentially wide spectrum of resis-

ing a). The slope of the line which is the least squares fit to thetances. Points are results of Monte Carlo simulations of a simple

data is—1.46. cubic lattice of sizd.=15. Lines are drawn according to E¢22)
and (25). Their slopes, i.e., exponentsy and m—2y, are calcu-
VI. NUMERICAL SIMULATIONS OF SYSTEMS WITH AN lated from the least squares analysis of the data in the range where
EXPONENTIALLY WIDE SPECTRUM OF both arithmetigextensions a) and harmonic averagéextensions
RESISTANCES _h) coincide, i.e., for 16A<30. Points refer tdc_a (star3, G_h

(triangles, Sg a for =1 (crossey Sg h for #=1 (diamonds,

To test results f_rom the preceding section we have Pers, a for 9=0’(Square}s Se h for 6=0 (circles. In rescaling ofG
formed Cqmputer S'mUIf”‘t'ons of a 3D E,WSR §ystem_. In eacf‘)jmdss the value of 1-0.2492 was used as the best known estimate
computational step a simple cubic lattice of linear dizen ¢ o percolation thresholi,=1—p, . G is in units ofgy=1/r,
which bonds were occupied randomly in the way described;_ s in units ofgZ/Hz, L is in units ofa,
in Eq. (9), was generated. A uniform distributidd(x) =1
was assumed for simplicity. Once the lattice was generate
resistances; of all its bonds were stored in a band matrix of
network equations and a unit dc external voltage was applie
to the opposite walls of the lattice. Free boundary condition
were applied in the remaining two directions. Then voltages
U, on all bonds of the lattice were computed. Once the volt-
ages were evaluated the network conductaBosas calcu- Ry=Nyri~Le"\ " Ir(xL), (28)
lated. Then the band matrix was refilled with the local
RPSD’s,s;, calculated according to the fors=r . Next
power spectral density of the network conductance fluctu
tions, Sg={8G6G}=SG, was calculated with the help of

qhe increasing of resistance of the percolation cluster. Within
a:le framework of the hierarchical model of Fig. 1 the resis-
nceR; of a metallic bridge in a system of site<¢ scales

where in place of ; we set(r),, the average resistance of
3honds which form the percolation cluster,

Eq. (3).
Let us now consider whether, as in the case of the TP 1 1
system, an employment of finite size scaling in the calcula- <f>1=f rOOD(X)dx= = T(XeL)- (29
XcL

tion of exponenim is possible. At first let us note that it is

relatively easy to follow the ideas of Kurkija [47] to get

the resultm=dv [55]. In this approach the only finite size Thus preexponential and exponentiatiependencies are in-
effect which is considered is the dependence of the perco|aLoIved in the finite size scaling behavior of the overall con-
tion threshold on the system site ductance of the EWSR system,

PeL=Pc+constL =, (27)

1
_ | —aglv _ -1l
while another effect of the increasing length of a percolation G R, L N exp(AXe)exp( — constal ).

path is not taken into account. However, the latter results in (30
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In view of this an exponential dependence with exponentalues should be compared with the theoretical analysis of
—1/v is expected to dominat& versusL rather than a the preceding section which far,=a,=1 predictsm=3v=
power-law dependence with exponentw;/v. Indeed, the 2.64 whereas for,={r and a,={; m=y+2v=2.36. Inde-
least squares fit of the data to the straight line given bypendently of the values af; and «, theory predicts double
—In[G exp(—Ax.)] versusL in log-log coordinates shown universality of the exponemh. Since we have obtained( ¢
in Fig. 4 leads to the acceptable estimate of the exponent 1)=m(6#=0) one can conclude that this double universal-
v=0.68+0.1. A similar finite size scaling behavior exhibits ity has been confirmed by our numerical simulations.
also the effective noise intensity, and thus we may con-
clude that in our approach finite size scaling cannot be used
to evaluate exponents or m. They should rather be calcu-
lated directly fromo,, versus\ or C, versus\ relations in the The behavior of the f/noise effective intensity in a two-
thermodynamic limit where Eq922) and (25) are valid.  phase percolation system and percolationlike system with an
Therefore our simulations were performed for various valuegxponentially wide distribution of bond resistances has been
of the parameteh in the range from 10 to 80 and for the reviewed. Monte Carlo simulations have been performed.
lattice sizelL =15. For each value of, up to several hundred For a two-phase system numerical values of noise critical
realizations of the network were generated and their condu@xponentsk=1.54+0.025, x'=0.61+0.02, w=6.31+0.25,
tances were averaged in two different ways, namely, arithandw’=6.9+0.25 have been found in agreement with the
metic and harmonic averages were calculated. Then the dataalysis performed with the help of a hierarchical model of a
were arranged into plots shown in Fig. 5. Basing on thistwo-phase percolation system. In a system with an exponen-
figure, we can check whether the data fall into the thermotially wide spectrum of resistances it has been found that for
dynamic limit by looking at the differences between arith-a microscopic noise generating mechanism which obeys the
metic and harmonic averages. When those two coincide ifiorm of {6r°} ~r2*? the effective noise intensity is given by
means that all network realizations give practically one valueC,~\™ exp(—\ 6x;) where 1-x. is the percolation thresh-
of G and another one foBg;. The system is then in the old. The exponenin is “double universal,” i.e., it is inde-
homogeneous region and we may use Eg2) and (25 to  pendent of lattice geometry and of the microscopic noise
approximate the numerical data. Thus when we plot productgenerating mechanism. Numerical simulations performed for
G exp(—AXx;) andSg exgA(0—2)x.] (note that forL fixed, = 6=1 and 0 givem=2.3 and confirm double universality of
Sc=SG~C.o2~\""% exd —\(6—2)x.] as a function of the exponenm. Connections of ¥/ noise effective intensity
\ in log-log scale, straight lines with the slopesy and  with the effective nonlinear susceptibility in the two-phase
m— 2y should be observed. This is really the caseNst30  weakly nonlinear percolation system have also been estab-
in Fig. 5. ForA\=30 where the differences start becoming lished.
significant we have&=\"=20, which is larger than our lat-
tice sizeL and the system is no longer in the thermodynamic
limit. The least squares analysis of the data in the range
16<A=<30 givesy=0.76+0.04 andm—2y=0.78+0.09 for The work was supported in part by the Commission for
6=0 andm—2y=0.73+0.3 for §=1. In the calculations the Scientific Research of Poland through Grant No. 8T11B 038
value ofx,=1—p.=1-0.2492 was used as the best known09 and in part by the Russian Foundation for Fundamental
estimate of the percolation threshold in the simple cubic latResearch through Grant No. 95-02-04432-a. A.A.S. is also
tice [23]. indebted to Rzeszw University of Technology for hospital-
As a final result of simulations we get approximately ity, where part of this manuscript was prepared. The authors
m=2.25+0.38 for /=0 andm=2.3=0.17 for 6=1. These are grateful for useful discussions with A. W. Stadler.
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