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The behavior of 1/f noise effective intensity in two-phase percolation systems and percolationlike systems
with an exponentially wide distribution of bond resistances is reviewed. Monte Carlo simulations on random
resistor networks are performed. For a two-phase system the numerical values of noise critical exponents
k51.5460.025,k850.6160.02,w56.3160.25, andw856.960.25 are found in agreement with theoretical
analysis performed with the help of a hierarchical model of a two-phase percolation system. For a system with
an exponentially wide spectrum of bond resistances, i.e., a system in which bonds take on resistances
r5r 0 exp~2lx!, wherel@1 andx is a random variable, it is assumed that in the individual resistors the noise
generating mechanism obeys the form$dr 2%;r 21u. In this case the effective noise intensityCe[SV, where
S is the relative power spectral density of system resistance fluctuations andV is the system volume, is given
by Ce;lm exp~2luxc!, where 12xc is the percolation threshold. The exponentm is ‘‘double universal,’’ i.e.,
it is independent of lattice geometry and of the microscopic noise generating mechanism. Numerical simula-
tions performed foru51 and 0 give approximatelym>2.3 and confirm this ‘‘double universality’’ of the
exponentm. The connections between 1/f noise effective intensity and effective susceptibility in a two-phase
weakly nonlinear percolation system are also established.@S1063-651X~96!04405-4#

PACS number~s!: 64.60.Ak, 64.60.Ht

I. INTRODUCTION

When electrical current flows through a conducting
sample the spectral density of voltage fluctuations increases
in comparison to that observed in equilibrium conditions
~Nyquist noise!. This additional noise indicates a strange
property—its relative power spectral density~RPSD! is
roughly inversely proportional to frequency. For this reason
this type of noise is often called 1/f noise. Other names are
resistance~conductance! noise, current noise, excess noise,
or flicker noise. The paper deals with the problem of estimat-
ing the 1/f noise intensity in macroscopically disordered me-
dia.

Let us recall fundamental definitions. Consider a resistor
characterized by resistanceR, its fluctuationdR, and the
volumeV which the resistor occupies. Then power spectral
density ofdR is SR5$dRdR%, whereas RPSD isS[SR/R

2.
$ % denotes the Fourier transform of the time correlation func-
tion. Theeffective noise intensityis defined asCe[VS. With
V→0 Ce becomes thelocal noise intensityat the pointrW,

C~rW !5 lim
V→0

VS. ~1!

It is well known that fluctuationsdR are spatially uncorre-

lated@1#. Utilizing this property one can calculate the effec-
tive noise intensity in terms of the second moment of the
Joule power dissipated in the medium@2#,

Ce5
^C~rW !@EW ~rW !• jW~rW !#2&

@^EW ~rW !• jW~rW !&#2
, ~2!

whereEW (rW) and jW(rW) are the local electric field and current
density, respectively, and averaging is over the whole
sample. Thus to evaluateCe it is necessary to know not only
the spatial distribution of the local noise intensityC(rW) but
also the distributions of currents and fields. The important
information that can be read from Eq.~2! is that only these
parts of the medium, in which large dc currents flow, pro-
duce large contributions to 1/f noise effective intensity.

The above considerations are valid also for percolation
systems which recently have attracted much interest. For ex-
ample, for percolation on a discrete lattice every bondi of
the lattice is randomly occupied by a resistancer i to which a
small fluctuating termdr i is attributed. RPSD ofdr i is con-
sequentlysi5$dr i

2%/r i
2 whereas the local 1/f noise intensity

Ci5sia 0
d, wherea0 is the lattice spacing, andd is the dimen-

sionality of the lattice. Consequently Eq.~2! transforms to
@3#

Ce5VS5a0
dLd

( i I i
4sir i

2

~( i I i
2r i !

2 5a0
dLd

( iVi
4si /r i

2

~( iVi
2/r i !

2 , ~3!
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where I i (Vi) is the current~voltage! in a bondi when an
external unit current~voltage! is applied to the lattice of size
L ~in units of a0!. Equation~3! enables us to write down
simple composition laws which, in analogy to Kirchhoff’s
laws, make the calculation of 1/f noise RPSD for simple
resistor circuits possible. Namely, whenN resistors each of
resistancer i , and RPSDsi are connected in series or parallel
we have

S5(
i51

N S r iRD 2si or S5(
i51

N SRr i D
2

si , ~4!

respectively, andR is the total resistance andS is RPSD of a
given connection.

To evaluateCe it is necessary to know not only a spatial
distribution of the local noise intensityC(rW) but also the
distribution of currents and fields and the solution of this
problem is usually not an easy task. To our knowledge no
general expression for a dependence ofCe on the composi-
tion of the disordered system with arbitrary type of random-
ness has been delivered until now. However, heterogeneous
media which are close to the percolation threshold behave in
many circumstances in a universal way. For example, it is
well known @4,5# that effective conductivityse of a binary
~two-phase! composite with component conductivitiess1
~metal! ands2!s1 ~‘‘insulator’’ ! behaves like the order pa-
rameter in the second order phase transition@6#, and can be
described by the scaling form

se~t,h!5s1m
sF1~t/mu,h/m!5s1h

sF~t/hu!, ~5!

wheret5(p2pc)/pc is a relative distance from the percola-
tion thresholdpc , p is the concentration of a metal~conduc-
tivity s1!, h5s2/s1!1, m is the usual scaling parameter, and
F1 andF are scaling functions. Exponentss and u can be
expressed in terms of other critical exponentst andq, s5t/
(t1q), u5s/t. The scaling functionF(z) approaches a finite
limit for z→0, whereas it behaves like a power-type function
at z→6`. Expanding Eq.~5! at h50 or at t50 one can
obtain relations forse above (p.pc), below (p,pc), and at
the percolation threshold in the so-called smearing region,
which is the analog of the smearing region in the theory of
the second order phase transition,

se5s1t
t~A01A1ht2~ t1q!1••• !

for p.pc and for t.D, ~6a!

se5s2utu2q~B01B1hutu2~ t1q!1••• !,

for p,pc and for utu.D, ~6b!

se5s1
12ss2

s~D01D1h
21/~ t1q!t1••• !

for utu,D, ~6c!

whereD5h1/(t1q) is the width of the smearing region@4,5#
andA0 ,A1 ,B0 ,B1 ,D0 ,D1 are constants of order unity. One
has to point out that whenh!1 it is acceptable, in the first-
level approximation, to bound the above expansions toA0,
B0, andD0 only. Thus the well known behavior ofs remains
by this approximation reconstructed,

se;s1t
t for p.pc , se;s2utu2q for p,pc .

~7!

As we see, the exponentst andq describe the critical behav-
ior of the effective conductivity and for this reason are often
called conductivity critical exponents.

Studying the behavior of 1/f noise in the vicinity of the
percolation threshold we are interested in expressing
Ce(t,h) in forms similar to those just obtained for the effec-
tive conductivity@Eqs.~5! and~6!#. However, unlike the case
of se , in the case ofCe bounding its expansion to the first
terms may not be adequate. For example, above the percola-
tion threshold it has been shown@7–13# that the contribution
of the insulating component which manifests itself through
the higher order terms in the expansion ofCemay turn out to
be not only a correction but rather an important, not negli-
gible contribution. It is not so obvious since forp.pc a dc
current flows in the medium mainly through its metallic
parts.

Until now we have considered two-phase~TP! percolation
media which are characterized by the following resistance
distribution:

f ~r !5pd~r2r 1!1~12p!d~r2r 2!, r 2@r 1 ~8!

where r 1 and r 2 are resistances which each bondi of the
lattice may take on in a random way with probabilitiesp and
12p. They are related to the component conductivities,
r 15a 0

22d/s1 , r 25a 0
22d/s2 . There is, however, also a very

interesting case of continuous resistance distributions. In this
case the strong heterogeneity can be maintained if the
‘‘worst’’ resistance which may appear in the system is much
greater than the ‘‘best’’ one. As an example one can consider
here the case

r i5r ~x!5r 0e
2lx, ~9!

where r i is the resistance of thei th bond andxP@0,1# is a
random variable with a smooth distributionD(x). Strong
heterogeneity is provided byl@1; in this case the maximum
resistance which appears in the lattice,rmax5r 0, is many
orders of magnitude larger than the minimum one,
rmin5r 0 exp~2l!. As an important example, which can be
just reduced to such a simplified problem, we recall the high
temperature hopping conduction. In high temperatures we
may neglect dispersion of energy levels on the localization
centers@14# andr2e hopping becomesr hopping. Although
the case with a continuous distribution of bond resistances
defined by Eq.~9! is not the classical percolation—it does
not exhibit the percolation threshold at which one of the two
components forms an infinite percolating cluster because the
components as such do not exist—there is the well known
approach@15–17# which allows one to reduce the problem
with a continuous distribution of resistances to the standard
percolation. Recently it was also shown@18,19# that for ob-
taining a not inconsistent percolationlike description of the
behavior of effective quantities in such media it is necessary
to assume that the system is in the smearing region. A model
of a percolation system in this region has also been recently
proposed@20#.

In the present paper in Sec. II a hierarchical model of a
TP percolation system~hÞ0! is presented and, on its basis,
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the critical behavior of the effective noise intensityCe is
evaluated. In Sec. III results of numerical simulation of a TP
system are presented. In Sec. IV comments on the behavior
of the nonlinear susceptibility in random weakly nonlinear
two-phase systems are supplied. In Secs. V and VI the be-
havior ofCe in systems with an exponentially wide spectrum
of bond resistances is described.

II. HIERARCHICAL MODEL OF A TWO-PHASE
PERCOLATION SYSTEM

A model allowing quantitative description of current flow
through a heterogeneous medium forp.pc has been devel-
oped by Skal and Shklovski@21# and de Gennes@22#. A very
basic assumption of this model is that on distances of the
order of percolation correlation lengthj ~see Ref.@23# for a
review of percolation!, current flows through singly con-
nected strings or bridges formed from a metallic component
which joins nodes of the backbone of an infinite metallic
cluster. Bonds contributing to the given percolating bridge
are nonparallel ones and are often referred to as singly con-
nected bonds~SCB’s!. When approaching the percolation
threshold from above, the numberN1 of SCB’s diverges as
N1;t2a1 and it is widely accepted that exponenta151
@21–24,14#. Thus that resistanceR1 of a metal bridge is
R15N1r 1 @see Fig. 1~a!#.

A similar model, but one which is below the percolation

threshold, has also been proposed@25–27#. According to this
model the main part of the voltage applied to the heteroge-
neous system drops on poorly conducting bonds which form
an insulating interlayer placed between isolated clusters of
metallic bonds. These poorly conducting bonds in a given
interlayer are connected in parallel and it is accepted to
call them singly disconnected bonds, since they disconnect
separate metallic clusters. Thus resistanceR2 of an insulating
interlayer consists ofN2 resistancesr 2 connected in parallel
@see Fig. 1~b!#. The numberN2 diverges at the percolation
threshold,N2;utu2a2 with a251. It has also been proposed
@28,8# to assumea15zR5t2n(d22) and a25zG5q
1n(d22), wheren is the percolation correlation length ex-
ponent,j;utu2n ~in units of a0!. Note that in this case the
models described above lead directly to Eq.~7! and this
means that these simple models can give only the first main
terms of the expansions ofse given by Eqs.~6a! and ~6b!.

Forh5s2/s150 ~s250, p.pc or s15`, p,pc! consecu-
tive terms of the expansion in Eq.~6! are absent. However,
in real physical systemsh is always finite, and further terms
of the expansion may play a non-negligible role. It is even
possible to have physical processes for which the critical
behavior is mainly determined by the second terms of expan-
sion in Eq.~6! @29#. A model which takes into account the
second and the next terms of the expansions should include
simultaneously a metal bridge and an insulating interlayer
both above and below the percolation threshold@8#. The first
stages of such a hierarchical~with respect toh! model of a
percolation structure are also shown in Fig. 1. Forp.pc
current mainly flows through a metallic bridge of resistance
R1, as is seen in the first~I! level of the hierarchy@Fig. 1~c!#.
In the second~II ! level an insulating interlayer of resistance
R2 is added in parallel toR1, as in Fig. 1~e!. Note that volt-
age drops onR1 andR2 are in fact the same and electrical
breakdown might take place faster in the insulating interlayer
than in the metallic bridge@20#. It means that an element of
the structure, which appears to be unimportant at first glance,
giving only a small correction of the order ofht2(t1q)!1 to
se , may happen to be of essential importance. Furthermore,
this argumentation is also valid even forh50, i.e., the ele-
ment of the structure which does not exist from the ‘‘s point
of view’’ turns out to be an essential one. A similar situation
is also possible forp,pc . Here a supplementary element of
the percolation structure—a metallic bridge—may become
essential if a breakdown phenomenon is based upon Joule
heating, i.e., in a case when a breakdown takes place once
j. j c , where j c is a critical current.
The consecutive steps of the hierarchical model are pre-

sented in Fig. 1. Further steps of the hierarchy may be con-
tinued as long as necessary—each successive step represents
a successive term in the expansion ofse given by Eq.~6!. It
was shown@8# that it is possible on the basis of this hierar-
chical model to write down a self-consistent equation, the
analog of the Dyson equation@30#, which includes all the
members of the hierarchy. In the case of effective conduc-
tivity this equation in symbolic representation has the fol-
lowing form:

FIG. 1. Hierarchical model of a two-phase~TP! percolating sys-
tem of sizej—the percolation correlation length.~a! R1 is the re-
sistance of a percolating metallic bridge. It is composed ofN1 re-
sistorsr 1. ~b! R2 is the resistance of an ‘‘insulating’’ interlayer. It is
composed ofN2 parallel resistancesr 2. The numbersN1 andN2
diverge at the percolation threshold,N1;utu2a1 andN2;utu2a2.
Hierarchical schemes model a TP system above~left column! or
below ~right column! the percolation threshold. In the first level~I!
of the hierarchy a TP system is modeled by resistanceR1 for p.pc
~c!, or by resistanceR2 for p,pc ~d!. In the next levels~II,III,... !
resistancesR2 andR1 are added alternatively in parallel or in series
to the elementsR1 andR2 added in the previous step of a generation
~e!–~h!.
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whereRe is related tose via se5(a0j)
22d/Re . The solu-

tions of these symbolic equations expanded in powers of the
small parameterhutu2(t1q) reconstruct series in Eqs.~6a!
and~6b!. The analog of the Dyson equation in the case of the
1/f noise effective intensity can also be written down@8#

whereS1 andS2 denote 1/f noise RPSD’s of a metal bridge
and an insulating interlayer, respectively.

The calculation of 1/f noise RPSD for the model in Fig.
1~e! enables an estimation ofCe for p.pc . In the three-
dimensional~3D! case we have

Ce.
C1 j 1

2E1
2V1 /V1C2 j 2

2E2
2V2 /V

se
2^E&4

, ~10!

where j 1 andE1 are the electric current density and field in
the bridge, whilej 2 andE2 are those in the interlayer, and
V15a 0

dN1 andV25a 0
dN2 are the bridge and interlayer vol-

umes, respectively.V5~a0j)
d is the volume of the hyper-

cube with the linear size equal to the correlation lengthj.
Denoting asw a potential difference on a distance of the
order ofj we have

j 15
w

R1a0
d21 , E15

w

a0N1
, j 25

w

R2a0
d21N2

, E25
w

a0
.

~11!

Inserting Eq.~11! into Eq. ~10! one obtains@8#

Ce~t.0!5C1t
2k1C2h

2t2w, p.pc ~12!

where k5dn2a1, w5k812(t1q), and k85nd2a2. The
major conclusion that can be read from the above result is
that under certain conditions the second term in Eq.~12! can
be much greater than the first one. This means that the noise
originating from an insulating phase describes the macro-
scopic noise also above the percolation threshold in spite of
the fact that in this region the effective conductivity is de-
scribed by a metallic component. This phenomenon was sug-
gested by Mantese and Webb@31# and Tremblay, Fourcade,
and Breton@7#. Equation~12!, which is its quantitative de-
scription, was derived by Morozovsky and Snarskii@8#.
Other derivations of Eq.~12! have also been proposed
@9–12#. They are based on scaling properties that have been
assumed for the functionCe(t,h). These approaches lead to
the main result of Eq.~12!, although predictions for the ex-
ponentsk andk8 are different. Within the framework of the
hierarchical model of the percolation structure considered so
far, the critical exponents of 1/f noise are

k5nd2a1 , k85nd2a2 . ~13!

Scaling analyses predict thatk andk8 are simple combina-
tions of the members of the family ofindependentmultifrac-
tal exponents and cannot be expressed only in terms of the

exponentsn, a1, anda2. In spite of this difference the nu-
merical values predicted by both approaches are nearly the
same.

In a quite similar way we can obtain the behavior of the
noise effective intensity forp,pc @8#,

Ce~t,0!5C2utu2k81C1h
2utu2w8, p,pc ~14!

wherew85k12(t1q). Eventually, havingCe both above
and belowpc described, we can findCe also inside the
smearing region. The simplest way is to insert
utu5D5h21/(t1q) in either of Eqs.~12! or ~14!,

Ce~ utu;D!5C1h
2k/~ t1q!1C2h

2k8/~ t1q!

for utu,D. ~15!

In the next section the above results are verified by means
of Monte Carlo simulations of a two-component random re-
sistor network.

III. NUMERICAL SIMULATIONS

In the preceding section the behavior of the 1/f noise
effective intensity in a TP percolation system has been de-
scribed. One of the conclusions was that above the percola-
tion threshold either the exponentk or the exponent
w52t12q1k8 may describe dependence of the effective
noise intensityCe on the concentrationp ~or t!. Which of the
two is observed in a particular system depends on the rela-
tion between magnitudes ofC1/C2 andh. Namely, for

C1

C2
!h~k2k8!/~ t1q! ~16!

the second term in Eq.~12! prevails over the first one also at
the border of the smearing region, i.e., forutu5D, and this
means that the exponentw describesCe versust above the
percolation threshold. Otherwise inCe versust one observes
the exponentk.

It is seen from Eq.~16! that to decide whether the behav-
ior of the 1/f noise intensity is described by exponentk or by
exponentw one has to know numerical values ofk andk8.
At first let us note that assuminga15zR and a25zG and
putting into Eq.~13! the best numerical estimates of expo-
nents t and q and n which are gathered in Table I gives
k51.58 andk851.01 in 3D ork5k851.37 in the 2D case.
On the other hand, whena15a251 is assumed, we get
k5k851.64 in 3D andk5k851.67 in 2D.

TABLE I. Summary of the recent numerical estimates of the
transport percolation exponents in 2D and 3D.

t q n

2D 1.303a 1.303a 4/3b

3D 1.94c 0.75d 0.88b

aReference@32#.
bReference@23#.
cReference@33#.
dReference@34#.
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For the 2D case the major conclusion is straightforward.
Sincek5k8 the ratioC1/C2 alone decides which of the two
terms in Eq.~12! dominates the effective noise intensityCe .
WhenC1!C2 , noise originating from the insulator and the
corresponding exponentw are observed also forp.pc .
Since in 3D the choicea15zR , a25zG predicts k.k8
whereask5k8 for a15a251, computer simulations are nec-
essary in order to calculate numerical values ofk andk8. In
Table II numerical estimates ofk andk8 in 3D are summa-
rized. It is evident that in 3Dk.k8 and the condition of Eq.
~16! leads to slightly stronger requirements for the exponent
w to be observed forp.pc . Using the data of Tables I and
II we roughly estimate thatC2/C1@h20.3 is large enough to
make the second term in Eq.~12! greater than the first one at
t5D.

Equations~12!, ~14!, and~15! are valid in the thermody-
namic limit, i.e., forL→`. In practice, to fulfill this require-
ment it is sufficient to keep the linear sizeL of the system
much greater than the percolation correlation lengthj. The
latter, in the critical region, diverges asj;utu2n and thus it
may require a large computational effort to reach the ther-
modynamic limit in the vicinity of the percolation threshold;
lattices of large size have to be simulated. To avoid this,
finite size scaling is usually employed. The simplest way to
find the size dependence of any quantity forL!j is to re-
placeutu in thermodynamic equations withL21/n. In the case
of effective noise intensityCe we thus obtain

Ce~L!j!;C1L
k/n1C2h

2Lw/n for p.pc . ~17!

Again one of the two terms can dominate theCe versusL
behavior depending on the ratiosC1/C2 and h. If for the
largest size available, i.e., forL5j;D2n;h2n/(t1q) ~note
that for the TP systemj ‘‘saturates’’ atD2n inside the smear-
ing region!, the second term in Eq.~17! is much greater than
the first one, the exponentw/n should be observed onCe
versusL plots. Otherwise the exponentk/n should be ob-
served. This leads again to the condition of Eq.~16! and all

the above considerations are valid also in the finite size scal-
ing behavior of the effective noise intensity.

Similarly we can analyze the behavior ofCe below the
percolation threshold, i.e., forp,pc . If inequality opposite
to the one given by Eq.~16! is fulfilled, i.e., if

C1

C2
@h~k2k8!/~ t1q!, ~18!

then the effective 1/f noise intensityCe originates mainly
from the resistance fluctuations in a metallic phase and con-
sequently the exponentw8 describesCe versust behavior.
Otherwise the noise from an insulator dominates the macro-
scopic fluctuations and the exponentk8 should be observed
@see Eq.~14!#. These conclusions can be easily extended to
the finite size scaling behavior ofCe . Numerical studies of
this behavior should enable one to distinguish between two
Ce versusL dependencies; the one dominated by the expo-
nentw8/n and the other one dominated by the exponentk8/n.

To test theoretical predictions of the preceding section,
finite size calculations of the 3D two-phase percolation sys-
tem have been performed. The preliminary results have al-
ready been published@13#. The bonds of a simple cubic lat-
tice were occupied randomly by resistances according to the
probability distribution of Eq. ~8! with r 151 and
r 251/h5107. The calculations were performed at the
percolation thresholdp5pc50.2492 @23# to maximize
the percolation correlation length and thus to make the
finite size scaling possible. Indeed atpc we expect
j>D2n5h2n/(t1q)>h21/3;107/3, which is much greater
than the largest lattice size,L522. Once the lattice was gen-
erated a unit external voltage was applied to the opposite
sides of the lattice. Free boundary conditions were used in
the remaining two directions. Next, internal voltages on all
the bonds in the lattice were evaluated. The lattice conduc-
tanceG was calculated as the total power dissipated in the
network. The effective noise intensityCe was calculated
with the help of Eq.~3! for various values of the ratio of the
component noise intensities. Namely, for the fixed value

TABLE II. Summary of numerical and renormalization group~RG! estimates of the noise critical expo-
nentsk andk8 in 3D.

Numerical simulations RG
Rigorous
boundsa

k 1.47,b 1.57,c 1.58,d 1.49,e 1.58,f 1.46,g 1.88,h 2.43,h 1.83,i 2.33,j 2.34k 1.53,k,1.6
k8 0.55,l 0.58,e 0.68,f 0.74g 0.66m 0.38,k8,1.02

aReference@27#.
bReference@35#.
cReference@36#.
dReference@37#, deduced from multifractal exponents.
eReference@9#, deduced from multifractal exponents.
fReference@10#, deduced from multifractal exponents.
gReference@38#, deduced from multifractal exponents.
hReference@40# ~cell-to-cell RG!.
iReference@40# ~two-parameter cell-to-cell RG!.
jReference@41# ~Migdal-Kadanoff bond moving method!.
kReference@42# ~cell-to-cell RG!.
lReference@13#.
mReference@39# ~Migdal-Kadanoff bond moving method!.
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C151 various valuesC2510220, 1, and 1020 were assumed.
Thus either of the conditions of Eqs.~16! and ~18! could be
fulfilled and the ideas of the preceding section were tested
numerically. To refer to either above or below threshold be-
havior we gathered percolating and nonpercolating samples
in separate ensembles, in whichG andCe were then aver-
aged. Results are shown in Fig. 2. For percolating samples
the slopes of the lines in this figure are 7.1760.2 and 1.75
60.025 when the condition of Eq.~16! is fulfilled or not,
respectively. Thus the exponentsw andk can be estimated as
w56.3160.25 andk51.5460.025, in quite good agreement
with the predictions of the preceding section,
w52(t1q)1k856.39 ~7.02! and k5dn2a251.58 ~1.64!.
Similarly, for nonpercolating samples the slopes of the lines
are 7.8460.2 and 0.6960.02 if the condition given by
Eq. ~18! is fulfilled or not, respectively. They lead to
the estimates of exponentsw856.960.25 and k850.61
60.02, which are again in quite good agreement with theo-
retical predictions w852(t1q)1k56.96 ~7.02! and
k85dn2a251.01 ~1.64!.

In conclusion, our numerical simulations confirm the va-
lidity of the analysis performed in the preceding section.
This strongly supports the usefulness of the hierarchical
model of the TP percolation system which has been used in
the derivations of theoretical results.

IV. NONLINEAR SUSCEPTIBILITY

Recently a number of papers have appeared which deal
with a weakly nonlinear TP random system. In such a system
both its components may indicate a weak cubic nonlinearity,
which just means that current density depends on electrical
field as jW i5s iEW i1x i uEi u

2EW i , wherexi is the nonlinear sus-
ceptibility of the componenti ~i51,2!. Since the work of
Stroud and Hui@43# and Aharony@44# it is known that the
effective nonlinear susceptibilityxe of the whole TP system
is related to the fourth moment of the local field distribution,
xe;^x(rW)E(rW)4&, and the problem becomes mathematically
equivalent to the estimation of effective 1/f noise intensity,
xe;Ces e

2 for the system with the local noise intensity
C(rW)5x(rW)/s2(rW). Thus the critical behavior ofxe is given
immediately from the equations describing the behaviors of
the effective noise intensity and the effective conductivity,

xe~t.0!5Ce~t.0!se
2~t.0!

5Ce~t.0!s1
2t2t5x1t

2t2k1x2t
22q2k8

for p.pc , ~19!

xe~t,0!5Ce~t,0!se
2~t,0!

5Ce~t,0!s2
2t22q

5x2utu22q2k81x1h
4utu2w822q

for p,pc , ~20!

xe~ utu,D!5Ce~ utu,D!se
2~ utu,D!

5Ce~ utu,D!s1
2q/~ t1q!s2

2t/~ t1q!

5x1h
~2t2k!/~ t1q!1x2h

2~2q1k8!/~ t1q!

for utu,D. ~21!

Thus it is surprising that the authors of Ref.@45# who start
just from Eqs.~19!–~21! for the nonlinear susceptibility ar-
rive at the results and conclusions for 1/f noise which are
different from those given by our Eqs.~12!, ~14!, and~15!.

V. 1/f NOISE IN SYSTEMS WITH AN EXPONENTIALLY
WIDE SPECTRUM OF RESISTANCES

As has already been mentioned in the Introduction, the
distribution which obey resistances forming a random resis-
tor network depends on a structure being modeled. In many
physical cases this distribution is very wide even on a loga-
rithmic scale. To be more precise, in this case bonds are
occupied in a random way by resistances which obey the
form of Eq. ~9!, wherex is a random variable sampled be-
tween 0 and 1 according to a smooth distributionD(x) and
parameterl takes on the values much greater than unity,
l@1. It was shown@14–17# that such a network can be
solved when treated as the usual percolation problem. In a
crude approximation the network effective conductivity,se

FIG. 2. The effective 1/f noise intensityCe as a function of
lattice sizeL. Simulations were performed for a 3D two-phase per-
colation system withr 151 and r 251/h5107 at the percolation
thresholdp5pc50.2492.Ce was calculated for various values of
the ratio C1/C2 . Namely, for C151 and various values of
C2510220 ~circles! andC251 ~crosses! for nonpercolating samples
and C251020 ~squares! and C251 ~triangles! for percolating
samples. The slopes of the lines which are the least squares approxi-
mations of the data are 7.1760.2 ~squares!, 1.7560.025~triangles!,
7.8460.02 ~circles!, and 0.6960.02 ~crosses!. Ce is in units ofC1
~triangles!, h2C2 ~squares!, C2 ~crosses!, andC1h

2 ~circles!. L is in
units of lattice spacinga0, C1, andC2 are in units ofa 0

d/Hz.
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is described by the largest resistance which opens the perco-
lating cluster, namely,se;exp(lxc), wherexc is related to
the percolation threshold in a classical percolation, i.e.,

E
xc

1

D~x!dx5pc

is the fraction of bonds required to form a cluster which
starts spanning the network. A more detailed treatment leads
to the derivation of the preexponential factor inse
@17,21,46–50#,

se;l2y exp~lxc!. ~22!

It was shown by the number of methods@21,47–49# that the
exponenty is related to the percolation correlation length
exponentn,

y5n~d22!. ~23!

Very recently an approach was proposed@18–20# which
also enables one to determine the exponenty. In this ap-
proach the system with an exponentially wide spectrum of
resistances~EWSR! is treated as a TP percolation system
working inside the smearing region@20#. Basing on this,
Morozovsky and Snarskii have shown that@19#

y5
a12a212n~d22!

2
. ~24!

Note that in terms of widely accepted values ofa15a251
@21–27#, Eq.~24! reduces to Eq.~23!. Fora15zR anda25zG
we get, however,y5(t2q)/2 @19#. For dimensiond52 both
the results coincide, givingy50. Using the estimates of
Table I we have in the 3D casen~d22!5n>0,88 whereas
(t2q)/2>0.6. Numerical simulations of the EWSR system
of Tyč and Halperin givey50.660.1 @48#, whereas our re-
cent numerical data givey50.76 ~10.09,20.08! @51# and
the rejection of any of the above predictions cannot be done.

While, as we have discussed in the previous sections, a
number of works deal with 1/f noise in TP systems, in
EWSR systems investigation has only recently started
@19,51#. To our knowledge, until now there has been no
unique theory predicting the value of the local noise intensity
Ci in the hoppinglike conduction; 1/f noise is still the subject
of controversy and increasing interest. Nevertheless, there
are suggestions thatsi may obey the form ofsi;r i

u. For
example, the Hooge phenomenological formula@52#, C;1/
n, wheren is a concentration of current carriers, suggests
~via s;n! s;r 1 and thusu51. Another example is the noise
in a single constriction contact where@53# s;r 3 and thus
u53. In fact, in our case the most appropriate values ofu are
those predicted by 1/f noise generated in tunnel junctions.

To calculate the effective noise intensity of the EWSR
system Morozovsky and Snarskii have used a model of the
percolation structure in the smearing region@20#. In this
model a current flows simultaneously through an ‘‘insulat-
ing’’ interlayer of resistanceR2 and a ‘‘metallic’’ bridge
of resistanceR1 which is in series with supplemental resis-
tancerm , as is seen in Fig. 3. The resistancesR1 andR2 take

on fixed values which are equal to those achieved at
the border of the smearing region,R15N1(utu5D)r (x1),
R25N2(utu5D)r (x2), where x15xc1(12xc)D, x2
5xc2(12xc)D. Unlike R1 andR2 the resistancerm takes
on random valuesrm5r (xm), wherexm is a random variable
which, in the case of the EWSR system, is uniformly
sampled over the smearing region. Basing on this model it
can be shown@19,54# that for22,u,2 the effective noise
intensity obeys the form

Ce;lm exp~2luxc!, ~25!

where exponentm for l→` andu51 is given by@19#

m5y12n. ~26!

For a15a251 we havey5n(d22) and Eq.~26! reads

m5dn. ~268!

As in the case of the exponenty, the estimates~26! and
~268! give the same resultm52n in 2D. In 3D our numerical
simulations presented in the next section, although they can-
not definitely reject any of the estimates of Eqs.~26! and
~268!, fulfill almost exactly the relationm53y and this
means that the choicea15a251 seems to be more appropri-
ate to model EWSR systems. This is well understood, since
in the EWSR system the ‘‘metallic’’ cluster is formed from
bonds with r i<r c . r c is obviously the resistance of the
bond which opens the percolating cluster, i.e., it is SCB.
Other metallic bonds which are mostly in blobs of the me-
tallic cluster have much smaller resistances~due to a wide
resistance distribution! and thus the influence of blobs on
transport properties is not so large as in TP percolation; the
flow of a current is governed by the SCB’s rather than by the
whole backbone of the percolation cluster.

Very recently an interesting feature of the exponentm
describing the preexponential factor in Eq.~25! has been
observed@54#. It has turned out thatm is u independent
although the noise intensity itself is strongly~exponentially!
u dependent. Thus the exponentm emerges as aDOUBLE
UNIVERSAL. Apart from the usual percolation universality,
i.e., independence of the lattice geometry, it is also indepen-
dent of the microscopic noise generating mechanism. This
conjecture is confirmed also by numerical simulations pre-
sented in the next section.

FIG. 3. A model of a two-phase percolation system in the
smearing region. ResistancesR1 and R2 take on fixed values
R15N1(utu5D)r (x1), R25N2(utu5D)r (x2), where x15xc1(1
2xc)D and x25xc2(12xc)D. The resistancerm takes on a ran-
dom valuerm5r (xm), where xm is a random variable which is
sampled over the smearing region.
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VI. NUMERICAL SIMULATIONS OF SYSTEMS WITH AN
EXPONENTIALLY WIDE SPECTRUM OF

RESISTANCES

To test results from the preceding section we have per-
formed computer simulations of a 3D EWSR system. In each
computational step a simple cubic lattice of linear sizeL, in
which bonds were occupied randomly in the way described
in Eq. ~9!, was generated. A uniform distributionD(x)51
was assumed for simplicity. Once the lattice was generated,
resistancesr i of all its bonds were stored in a band matrix of
network equations and a unit dc external voltage was applied
to the opposite walls of the lattice. Free boundary conditions
were applied in the remaining two directions. Then voltages
Ui on all bonds of the lattice were computed. Once the volt-
ages were evaluated the network conductanceG was calcu-
lated. Then the band matrix was refilled with the local
RPSD’s,si , calculated according to the formsi5r i

u. Next
power spectral density of the network conductance fluctua-
tions,SG5$dGdG%5SG2, was calculated with the help of
Eq. ~3!.

Let us now consider whether, as in the case of the TP
system, an employment of finite size scaling in the calcula-
tion of exponentm is possible. At first let us note that it is
relatively easy to follow the ideas of Kurkija¨rvi @47# to get
the resultm5dn @55#. In this approach the only finite size
effect which is considered is the dependence of the percola-
tion threshold on the system sizeL,

pcL5pc1constL21/n, ~27!

while another effect of the increasing length of a percolation
path is not taken into account. However, the latter results in

the increasing of resistance of the percolation cluster. Within
the framework of the hierarchical model of Fig. 1 the resis-
tanceR1 of a metallic bridge in a system of sizeL!j scales
as

R15N1r 1;La1 /nl21r ~xcL!, ~28!

where in place ofr 1 we set^r &1, the average resistance of
bonds which form the percolation cluster,

^r &15E
xcL

1

r ~x!D~x!dx>
1

l
r ~xcL!. ~29!

Thus preexponential and exponentialL dependencies are in-
volved in the finite size scaling behavior of the overall con-
ductance of the EWSR system,

G;
1

R1
;L2a1 /nl exp~lxc!exp~2constlL21/n!.

~30!

FIG. 4. Finite size scaling of the conductanceG ~in units of
g051/r 0! of 3D lattice of the sizeL with an exponentially wide
spectrum of resistances. The points are the results of numerical
simulations.G is the average in the ensemble of several hundred
realizations forL515 up to several thousand realizations forL55.
On the vertical axis the valuexc512pc5120.2492 was used in
the rescaling of conductance. Simulations were performed for
l5140, which causes the system to be not in a homogeneous re-
gion, sincej>ln585@L ~bothL andj are in units of lattice spac-
ing a0!. The slope of the line which is the least squares fit to the
data is21.46.

FIG. 5. Results of numerical studies of conductanceG and
power spectral density of conductance fluctuationsSG in random
resistor network with an exponentially wide spectrum of resis-
tances. Points are results of Monte Carlo simulations of a simple
cubic lattice of sizeL515. Lines are drawn according to Eqs.~22!
and ~25!. Their slopes, i.e., exponents2y andm22y, are calcu-
lated from the least squares analysis of the data in the range where
both arithmetic~extensions2a! and harmonic averages~extensions

2h! coincide, i.e., for 16<l<30. Points refer toG2a ~stars!, G2h
~triangles!, SG2

a for u51 ~crosses!, SG2
h for u51 ~diamonds!,

SG2
a for u50 ~squares!, SG2

h for u50 ~circles!. In rescaling ofG
andSG the value of 120.2492 was used as the best known estimate
of the percolation thresholdxc512pc . G is in units ofg051/r 0 ,
SG is in units ofg0

2/Hz, L is in units ofa0
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In view of this an exponential dependence with exponent
21/n is expected to dominateG versusL rather than a
power-law dependence with exponent2a1/n. Indeed, the
least squares fit of the data to the straight line given by
2ln@G exp(2lxc)# versusL in log-log coordinates shown
in Fig. 4 leads to the acceptable estimate of the exponent
n50.6860.1. A similar finite size scaling behavior exhibits
also the effective noise intensityCe and thus we may con-
clude that in our approach finite size scaling cannot be used
to evaluate exponentsy or m. They should rather be calcu-
lated directly fromse versusl orCe versusl relations in the
thermodynamic limit where Eqs.~22! and ~25! are valid.
Therefore our simulations were performed for various values
of the parameterl in the range from 10 to 80 and for the
lattice sizeL515. For each value ofl, up to several hundred
realizations of the network were generated and their conduc-
tances were averaged in two different ways, namely, arith-
metic and harmonic averages were calculated. Then the data
were arranged into plots shown in Fig. 5. Basing on this
figure, we can check whether the data fall into the thermo-
dynamic limit by looking at the differences between arith-
metic and harmonic averages. When those two coincide it
means that all network realizations give practically one value
of G and another one forSG . The system is then in the
homogeneous region and we may use Eqs.~22! and ~25! to
approximate the numerical data. Thus when we plot products
G exp(2lxc) andSG exp@l~u22!xc# „note that forL fixed,
SG5SG2;Ces e

2;lm22y exp@2l~u22!xc# as a function of
l in log-log scale, straight lines with the slopes2y and
m22y should be observed. This is really the case forl<30
in Fig. 5. Forl530 where the differences start becoming
significant we havej>ln>20, which is larger than our lat-
tice sizeL and the system is no longer in the thermodynamic
limit. The least squares analysis of the data in the range
16<l<30 givesy50.7660.04 andm22y50.7860.09 for
u50 andm22y50.7360.3 for u51. In the calculations the
value ofxc512pc>120.2492 was used as the best known
estimate of the percolation threshold in the simple cubic lat-
tice @23#.

As a final result of simulations we get approximately
m52.2560.38 for u50 andm52.360.17 for u51. These

values should be compared with the theoretical analysis of
the preceding section which fora15a251 predictsm53n>
2.64 whereas fora15zR anda25zG m5y12n>2.36. Inde-
pendently of the values ofa1 anda2 theory predicts double
universality of the exponentm. Since we have obtainedm(u
51)>m(u50) one can conclude that this double universal-
ity has been confirmed by our numerical simulations.

VII. CONCLUSIONS

The behavior of the 1/f noise effective intensity in a two-
phase percolation system and percolationlike system with an
exponentially wide distribution of bond resistances has been
reviewed. Monte Carlo simulations have been performed.
For a two-phase system numerical values of noise critical
exponentsk51.5460.025, k850.6160.02, w56.3160.25,
andw856.960.25 have been found in agreement with the
analysis performed with the help of a hierarchical model of a
two-phase percolation system. In a system with an exponen-
tially wide spectrum of resistances it has been found that for
a microscopic noise generating mechanism which obeys the
form of $dr 2%;r 21u the effective noise intensity is given by
Ce;lm exp~2luxc! where 12xc is the percolation thresh-
old. The exponentm is ‘‘double universal,’’ i.e., it is inde-
pendent of lattice geometry and of the microscopic noise
generating mechanism. Numerical simulations performed for
u51 and 0 givem>2.3 and confirm double universality of
the exponentm. Connections of 1/f noise effective intensity
with the effective nonlinear susceptibility in the two-phase
weakly nonlinear percolation system have also been estab-
lished.
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