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Shot noise power in 3D disordered conductors has been studied by means of numerical simula-
tions. The Anderson model of disordered conductor, Green’s function technique and Fisher-Lee
relations have been employed to calculate the transmission matrix t, its eigenvalues Tn, the con-
ductance G = Tr(tt+) and the shot noise power S = Tr(t+t) –– Tr(t+t)2 for various degrees of
disorder. To explain the results of simulations, Nazarov’s microscopic theory describing the cor-
rection to the distribution of transmission eigenvalues has been applied. It was found that the
crossover from the ballistic to the diffusive region is well described by the relation obtained by
random matrix theory. In the weakly localized regime the correction to the shot noise power is
different from the 1D result. Namely, S = G/3 + 0.209. At the localization–delocalization transition
we have observed S ffi 0.57G.

Introduction Over the past few years a growing interest in shot noise studies of disor-
dered conductors is being observed [1–3]. A very convenient quantity to characterize
properties of disordered systems with respect to shot noise is the Fano factor
F �

P
n
Tn 1� Tnð Þ

� �
=
P
n
Tn¼ S=G, where S and G are the dimensionless shot noise

power and quantum conductance, respectively, and Tn are eigenvalues of the transmis-
sion matrix square t+t. In the 1D case the transition from ballistic to diffusive regime
has been proven to be described by the relation [4]

F ¼ 1
3

1� 1
1þ L=l

� �
; ð1Þ

where L is the size of the system and l is the mean free path. On both sides of
this crossover the above formula gives the well known results. In the ballistic regime
(l � L) F tends to 0 due to all eigenvalues being close to unity. On the other side, in
the metallic diffusive limit, where L � l, we have F = 1/3 which is also a well known
fact [1]. All these results have been obtained within the framework of random matrix
theory, which in principle, works in 1D systems.
The aim of this paper is to present new results concerning the influence of disorder

on the shot noise in 3D disordered conductor. The main result presented here is the
weak localization quantum correction to shot noise power dS � S –– G/3 ffi 0.209 in
3D, which turns out to be significantly larger than that observed in reduced dimen-
sionalities. We also show that for critical disorder (W = 16.5) the Fano factor takes
the value of F ffi 0.574. Both these results have been obtained by means of Monte
Carlo simulations and then confirmed by the use of the microscopic theory of WL
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corrections to the distribution of transfer matrix eigenvalues [5] and conjecture about
linear distribution of variables ln ¼ arccosh ð1=

ffiffiffiffiffiffi
Tn

p
Þ at localization–delocalization

transition [6].
The paper is organized as follows: after the introduction a description of the model

used in numerical studies comes together with the details of the computational proce-
dure. Next, the results of simulations are shown followed by the discussion. At the end
some final conclusions are given.

Model and Numerical Details We have used the Anderson model of disorder
described by the one-electron tight-binding Hamiltonian with hopping restricted to
nearest neighbors only,

H ¼ H0 þV ¼
P
n

ni en hnj j þ t
P
n;m

ni hmj j . ð2Þ
Diagonal disorder was introduced by taking site energies en randomly with uniform
probability density of 1/W. The elements tmn of transmission matrix t were evaluated
with the help of Fisher-Lee relations [7],

tmn ¼
P
j2L1

P
k2L2

icn jð Þ ffiffiffiffiffi
vn

p
GkjðL1;L2Þ

ffiffiffiffiffiffi
vm

p
cm kð Þ ; ð3Þ

where cn, cm are transverse components of envelope functions, vn, vm are longitudinal
velocities of incoming and outgoing waves, respectively, and the sums run over all sites
in leads L1 (left) and L2 (right) that lie on the sample-to-lead edge. To determine the
Green’s function G the Dyson equation G ¼ I�G0Vð Þ�1G0, where G0 ¼ EI�H0ð Þ�1

was employed [8]. Having the matrix t evaluated the eigenvalues Tn of t+t were calcu-
lated by the standard LAPACK procedure. Eventually the dimensionless shot noise
power S and quantum conductance G have been calculated as S ¼

P
n
Tn 1� Tnð Þ and

G ¼
P
n
Tn. All calculations have been done for the energy E close to the band center,

E = 0.5t. The simulations have been performed for many configurations of disorder
potential of which the results were then averaged and marked by ‘h i’.

Results and Discussion The results of the simulations are depicted in Fig. 1 in the
form of hSi versus hGi plots which allow us to study distinct transport regimes. Data for
small disorder (W < 8) are grouped in Fig. 1a. An additional line, hSi = hGi/3, is added
to distinguish the features of diffusive region. Data for 4 � W � 7 follow this line even
for small sizes. For W � 3 data are situated below this line. We interpret this situation
as the crossover to ballistic regime. This is proven in Fig. 2 where data from Fig. 1a for
1 � W � 3 have been replotted in (1 – 3F)1/3 versus L coordinates. They follow straight
lines with the slope corresponding to (disorder-dependent) mean free path. Our results
confirm that relation (1) describes the crossover from the ballistic to the diffusive
region also in 3D systems.
In the weakly localized regime, G > 1, the data in Fig. 1b tend to approach the line

hSi = hGi/3 + 0.209 (see also Fig. 3). This behavior is similar to that observed in
reduced dimensionalities, however with the exception of constant term. Namely, in 1D
and 2D the relations hSi = hGi/3 + 4/45 [4] and hSi = hGi/3 + 0.124 [9] have been
found. The significant rise in constant term is not accidental nor caused by numerical
imperfections. To prove it we recall the microscopic theory of weak localization correc-
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tions to eigenvalues of the matrix t+t [5]. This theory gives the function dF(f) generat-
ing moments of the WL correction to transmission eigenvalues [5]

dF fð Þ � dTr
tþt

1þ sin2
f

2
tþt

0
@

1
A ¼ � 2f

sin f

P
s

1

s2 � f2 ; ð4Þ

where for 3D geometry s2 = p2(n2x + n2y + n2z) and nx, ny, nz are integer numbers label-
ing discrete diffusion modes. Further, x is the direction of transport and nx starts from 1
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Fig. 1 (online colour). Dimensionless shot noise power hSi versus conductance hGi for a) 1 � W � 7
and b) 8 �W � 25. The meanings of the symbols are given in the legends. Solid lines are the plots of
hSi = hGi/3, which is the metallic diffusive limit. The dashed line is the plot of hSi = hGi/3 + 0.209
which is the weak localization result. The dotted line is the (strong) localization limit hSi = hGi.
For W � 15 (W � 17) the increase of L, causes increase (decrease) of hGi



whereas ny, nz range from 0 to 1. We get

dTr tþtð Þ ¼ dF 0ð Þ ¼ 2
P
s
s�2 ; dTr tþtð Þ2¼ 4 ddF 0ð Þ=df2 ¼ 4

P
s
s�4 ; ð5Þ

which, if combined, give eventually dS ¼ 8
P
s
s�2: Numerical evaluation in 3D gives

dS � 0:20936 . . ., in excellent agreement with our numerical simulations in Figs 1b and
3. It is interesting to examine r.m.s. fluctuations of shot noise power. The random ma-
trix theory predicts r:m:s: S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2h i � Sh i2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
46=2385

p
ffi 0:123 in 1D case [4]. In 3D

r.m.s. S saturates at considerable higher level of approximately 0.2. This is apparent in
Fig. 4 where results from simulations are depicted against the horizontal line in the
background, which is 1D limit.
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Fig. 2 (online colour). Data from Fig. 1a replotted in different coordinates. The mean free paths
are estimated from the slopes of the approximating lines

Fig. 3 (online colour). Data from Fig. 1 with additional data series rearranged in hSi � hGi/3 versus
hGi coordinates. The solid line is the weak localization limit



The unique feature of noninteracting 3D systems is disorder induced localization–
delocalization transition. It is interesting to look into the behavior of shot noise power
as critical disorder WC ffi 16.5 is approached [6]. In Fig. 5 the Fano factor versus the
system size L is depicted for a variety of disorder, covering ballistic, diffusive, weakly
and strongly localized regimes. For W � 3 the trajectories approach from below the
asymptotic dashed line at 1/3 which is the theoretical limit for metallic diffusive wires.
With increasing disorder the data approach the same asymptotic limit but from above.
It takes place up to W = 14. At even stronger disorder a very interesting behavior is
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Fig. 4 (online colour). r.m.s. fluctuations of shot noise power S versus hGi. The horizontal line is
the random matrix theory limit of
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Fig. 5 (online colour). Fano factor F versus system size L for various disorder degrees W. The
meaning of the symbols is as follows: square W = 3, circle W = 4, uptriangle W = 5, downtriangle
W = 6, diamond W = 10, lefttriangle W = 12, righttriangle W = 14, hexagon W = 16, star W = 17,
cross W = 25



apparent. Namely, a nearly constant Fano factor of F ffi 0.57 is observed for 16 �W � 17.
Further increase in disorder, W > 17, causes the system to cross into a strongly loca-
lized regime where, due to all channels being closed (Tn ! 0), F reaches theoretical
upper limit of 1.
The value of the Fano factor F ffi 0.57 we have found at metal-insulator transition

calls for comparison with existing knowledge. We recall that the probability density of
the variable l ¼ arccosh ð1=

ffiffiffiffi
T

p
Þ at the transition point was found to be nearly linear,

P(l) / l [6]. The Fano factor at the transition point can be estimated as

F ¼ T 1� Tð Þh i
Th i ¼

Ð1
0
cosh�2 l 1� cosh�2 l

 �
l dl

Ð1
0

l cosh�2 l dl

� 0:57378

which is in agreement with our numerical result in Fig. 5.

Summary Numerical simulations of the shot noise power in disordered 3D systems
show that the crossover from ballistic to diffusive regime follows the same relation as
for the 1D case. In the weakly localized regime the shot noise power S exceeds the
one-third suppression value by dS = 0.20936. At localization–delocalization transition
the Fano factor takes the value of F ffi 0.574.
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[6] P. Markoš, Ann. Phys. (Germany) 8, SI-165 (1999).
[7] D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).
[8] M. J. McLennan, Yong Lee, and S. Datta, Phys. Rev. B 43, 13846 (1991).
[9] A. Kolek, A. W. Stadler, and G. Hałdaś, Phys. Rev. B 64, 075202 (2001).
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