WARUNKI GENERACJI DRGAŃ

1. PRZEBIEG ĆWICZENIA

1.1. Połączyć układ do pomiaru charakterystyk amplitudowej i fazowej wzmacniacza pasmowego w części PCB WGD. Włączyć napięcia zasilające oraz przyrządy pomiarowe. Do pomiaru użyć funkcji FRA w oscyloskopie (ustawić amplitudę na 40 mV).

Po zakończeniu nastaw na ekranie powinny pojawić się charakterystyki amplitudowa i fazowa wzmacniacza. Pomiarów w dalszej części dokonywać tylko po zakończeniu pomiarów. Posługując się markerami (ustawiane enkoderem *Push To Select*) przeprowadzić pomiar wielkości zaznaczonych w tabeli w części dotyczącej wzmacniacza dla dwóch położeń przełącznika: R_M i R_m . Charakterystyki należy również zapisać w formacie pliku tekstowego w pamięci dysku USB, używając oscyloskopu (przycisk *Save/Recall*). Następnie ustawić potencjometr R35 w skrajne prawe położenie. Wybrać na wkładce pozycję przełącznika R35. Regulując R35 w lewo doprowadzić do wartości wzmocnienia w środku pasma równej w przybliżeniu wartości k_{u0} zmierzonej dla przypadku R_M . Za pomocą FRA przeprowadzić pomiary wielkości identycznie jak dla RM i Rm. Wyniki umieścić w tabeli i zapisać do pliku. **UWAGA: W dalszej części nie zmieniać wartości nastaw R**₃₅. Wykorzystując gniazdo b2 dokonać pomiaru rezystancji całkowitej R_3 dla przypadków: R_M , R_m i R_{35} (wyłączyć napięcie zasilające i źródło sygnału). Porównać je z wartościami odczytanymi ze schematu (rys 3.1, przybliżone wartości: $R_M = 202 \text{ k}\Omega$, $R_m = 1 \text{ k}\Omega$. W przypadku innych wartości zmienić tryb pomiaru z auto na manual.

				-	WZMA	ACNIACZ					GENE	RATOR	
	f _{d3dB}	f_{g3dB}	Δf	k_{u_0}	\mathbf{f}_0	f(φ=0)	$\Delta \phi / \Delta f \ dla \ \phi = 0$	Dob	roć	szkic	fgen	THD	ku0β
	[Hz]	[Hz]	[Hz]	[dB]	[Hz]	[Hz]	[rad/Hz]	\mathbf{Q}_1	Q ₂	sygnału	[Hz]	[%]	
RM													
Rm													

|--|--|

1.2 Połączyć wyjście wzmacniacza pasmowego WGD z jego wejściem za pomocą krótkiego kabla współosiowego, przekształcając go tym samym w układ generatora. Połączyć układ pomiarowy generatora jak na rysunku poniżej. Oscyloskopem cyfrowym zaobserwować kształt i zmierzyć często-tliwość f_{gen} sygnału. Przebiegi czasowe zapisać w plikach tekstowych (np. csv). Następnie za pomocą oscyloskopu zmierzyć współczynnik zniekształceń nieliniowych THD. Po ustawieniu FFT oglądać na ekranie widmo częstotliwościowe generowanych drgań (Przycisk *FFT* \star *Source (wybrać kanał do którego doprowadzono sygnał)* w skali liniowej (Przycisk *FFT* \star *Vertical Units: Linear*) i w odpowiednim zakresie częstotliwości (Przycisk *FFT* \star *Start Freq: 0Hz i Stop Freq* – wprowadzić z klawiatury wartość $\cong 10 \times f_{gen}$). Pomiary przeprowadzić dla wszystkich trzech pozycji przełącznika na wkładce. Wyniki po miarów i obserwacji umieścić w tabeli w części dotyczącej generatora. Używając pamięci zewnętrznej USB zapisać widmo częstotliwościowe sygnału dla przypadku R₃₅.

generatora

2. SPRAWOZDANIE

2.1. Porównać zmierzone charakterystyki częstotliwościowe z otrzymanymi na podstawie symulacji obwodu, np. programem Multisim - zamieścić schemat. W symulacjach przyjąć zmierzone wartości rezystancji R_3 dla przypadków R_M , R_m i R_{35} . Charakterystyki zmierzone i obliczone umieścić na jednym rysunku.

2.2. W celu wypełnienia kolumny "dobroć" wyprowadzić związki pomiędzy dobrocią obwodu rezonansowego a szerokością charakterystyki amplitudowej $B = \Delta f$ (kolumna Q_1) oraz pomiędzy dobrocią a nachyleniem charakterystyki fazowej $\Delta \phi / \Delta f$ w punkcie jej przejścia przez 0 (kolumna Q_2). Porównaj wyznaczone 2 sposobami wartości Q. 2.3. W oparciu o tabelę odpowiedz na następujące pytania, podając krótkie uzasadnienia:

- a) który z przypadków najpełniej ilustruje warunek generacji drgań $f_{gen} = f_{\phi=0}$;
- b) jakie zjawisko może być przyczyną tego, że w 2 przypadkach warunek fazy nie jest spełniony, przy czym $f_{gen} < f_{\phi=0}$ podaj odpowiedni wzór;
- c) jaki jest związek pomiędzy kształtem generowanego sygnału (wartością THD) a wartością stosunku zwrotnego |ku₀β|;
- d) jaki jest związek pomiędzy kształtem generowanego sygnału (wartością THD) a względną szerokością pasma (dobrocią) wzmacniacza objętego pętlą dodatniego sprzężenia zwrotnego – porównaj przypadki, dla których wartości |kuoβ| są zbliżone.

2.4. W oparciu o zmierzone widmo sygnału oblicz na podstawie definicji wartość współczynnika zniekształceń nieliniowych i porównaj z wartością zmierzoną analizatorem HP36660A.

3. OPIS WZMACNIACZA PASMOWEGO - WGD

Schemat ideowy wkładki DN071A przedstawiono na rys. 3.1. Jest to trzystopniowy wzmacniacz pasmowy o wzmocnieniu w zakresie średnich częstotliwości ku₀ ≈ 12. Górną częstotliwość graniczną badanego wzmacniacza określa filtr dolnoprzepustowy R₇C₂. Od dołu pasmo ograniczane jest przez filtr górnoprzepustowy R₃C₁. Rezystancja ta może być regulowana płynnie (R_{35}) lub skokowo (R_{33} , R_{34}). Umożliwia to zmianę dolnej częstotliwości granicznej a więc i zmianę kształtu charakterystyk amplitudowych (rys. 3.2) oraz fazowych wzmacniacza.

4. WYKAZ WKŁADEK I PRZYRZĄDÓW

- oscyloskop, multimetr z omomierzem

- trójnik BNC, kable BNC